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§0. Introduction.

Let G be a connected affine algebraic group defined over an algebraic-
ally closed field K of any characteristic. Then the set & of all Borel
subgroups of G can be regarded as a projective variety. Given a subset.S
of G, we want to know about the subvariety %° which consists of Borel
subgroups containing S. In this paper we consider the dimension of Z*°.

In connection with this problem, R. Steinberg conjectured that for any
reductive algebraic group G and any element x of G, the following equality
holds.

dim Z;(x) = rank G 4+ 2 dim #~,

where Z;(x) denotes the centralizer of x in G. And he proved that if x is
a unipotent element, then the left-hand side is not less than the right-hand
side ([3]). The main result of the present paper is Corollary 9, which says
that if G is a reductive group and S is a diagonalizable subset of G satis-
fying a certain condition, we can compute the dimension of &5, using the
root system of G. It is derived from a relation between dimensions of
Zs(S) and #°. As an application of our result, we note that the above
conjecture is true for semi-simple elements.

Throughout this paper, G denotes a connected affine algebraic group
over an algebraically closed field K. The terminology and notations we
employ are mostly those of Borel ([1]).

§1. The moduli of Cartan subgroups.

Given an algebraic group H, we write H° for its identity component.
Given an element or subset S of H then “S stands for xSx*.

We recall that the set &= #(G) of all Borel subgroups of G is
naturally endowed with an algebraic structure. That is for a fixed B¢ &,
we have a bijection G/B — %, mapping a coset gB to a point (B of &
Through this bijection, we can regard .% as a flag variety. Furthermore if
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S is a subset of G, then the fixed point set (G/B)s of S in G/B corresponds
to the set %° of Borel subgroups containing S.

Suppose that G is defined over a subfield £ of K and has a k-split
Borel subgroup and that S consists of k-rational points. Then &S is a
k-closed subvariety of % Moreover if k is perfect, then k-group Zg(S)
acts on k-variety %S, k-morphically.

Now we shall apply a similar method to Cartan subgroups of G to
construct an algebraic variety whose dimension is dim G—rank G. Let &

=# (G) denote the set of all Cartan subgroups of G. For a fixed C€ &,
define a mapping

¢: GING(C) > F, ¢(g-No(C))=*C.

By the way, it is well-known that G/N4(C) is an irreducible smooth quasi-
projective variety (see e.g. [1], §6). Through this G-equivariant bijection
¢, one can give & the variety structure of G/N4(C), not depending on the
choice of C. This is an analogue of &, however, it is not so natural as in
the case of &, for Ng(C) is not equal to C in general. But we have a
canonical morphism ¢ of G/C onto G/Ns(C). ¢ is surjective and every
fibre of ¢ is finite, because N4(C)°=C. Hence we have

dim ¥ = dim G — rank G.

Furthermore for any subset S of G, we write & ° for the set of Cartan
subgroups containing S. Then we have

Prorosition 1. For any subset S of G, & ° is a closed subvariety of &

Proor. G acts on G/C in the natural way, and the set (G/C)s of fixed
points of S in G/C is closed. But since the condition S-gC=gC is equi-
valent to Sf=g 'SgC C, it follows that ¢((G/C)s)= % 5. On the other hand,
if g7*g’ € Ng(C) and StCC, then S¢CC. Since ¢ is a quotient morphism,
and hence open, we conclude that %5 is closed.

ProrosiTioNn 2. If S is a subgroup of G consisting of semi-simple
elements, then dim % 5= dim 5.
Proor. If &Z° is empty then so is 5. We assume Z° is not empty.
We define
Y={(C, B) € 55X F°|Sc Cc B}.

Since the projection of Y to S is surjective, dim Y = dim #°. On the
other hand, the projection of Y to &% is surjective, and every fibre is
finite. Hence dim Y=dim &5, so the proposition follows.
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§ 2. The centralizer of a diagonalizable subset.

We shall assume from now on that G is reductive. Let T be a maximal
torus in G and @=@(T, G) the root system of G relative to T. Let B and
B~ be opposite Borel subgroups relative to T, and put @(B)=@*, @(B™ )=
@~. We write U (resp. U™) for the unipotent part of B (resp. B~). In the
following lemma, G, denotes the additive group of K.

Lemma (cf. [1]-§ 14). For each a € @, there exists a connected uni-
potent subgroup U. of G, normalized by T, and an isomorphism 6,: G,—
U, such that ¢0,(u)t*=0,(a(t)u) (u € G, t € T). Furthermore the mor-
phism ¢ of G; X T X G onto U-TU defined by o (I u 2 T[up) =

aco~ Beo”

(I1 6. (u.)) t (TI 605(up)) (arbitrary but fixed order of the factors) is an iso-

aco” peo™
morphism, where n—=%@*, the number of the set @*.

Now let S be a diagonalizable subset of G with %° + ¢. We shall
clarify the structure of Z;(S) in the following

ProrositioN 3. Let G be a reductive group with a maximal torus 7,
and S a subset of T. Put ¢=¢@(T, G) and

Os = {a € @la(S) = 1}.

(i) @s is a closed subsystem of @.
(ii) Zg(S)? is generated by T and U,(a € @g).
(ii1) Zs(S)® is a reductive group with the maximal torus 7, and

O(T, Zs(S)°) =Ps.
Proor. For any element x of UTU of the form (]] Ba(ua))t(ﬁﬂ 045(ug))
a<0 >0

and any element s of S, we have

sxs~ = (11 Oala(s)u.)) t (11 O(B(s)us))
a0 A>0
It then follows that sxs~'=x if and only if y(s)=1 for any root y with
u,#0. Hence Z,(S) > x if and only if y € @5 for any root with u,=#0.
Thus Z,(S)NUTU equals ([T U,) T (Il U,). But U"TU is open in G, and
0 B>0

ag
aEdg BE D,

since the subgroup generated by T and U, a € @s) is connected, it coin-
cides with Z;(S)% as claimed.

The first and last assertions are obvious.
Thus we obtain

TueoreM 4. Let G be reductive and S a diagonalizable subset of G
with #° + ¢. Then
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dim Z(S) = rank G +2 #{a a positive root | a(S) = 1},

where the root system is taken relative to any maximal torus of G con-

taining S.

Remark. We can obtain another proof of Theorem 4, by investigating
the Lie algebra g of G. The sketch of the proof is as follows. Since S
is diagonalizable, the Lie algebra L(Z(S)) of Z4(S) is equal to g° (where
gS is defined by: ¢°={X € g|(Ad s) X=X for all s € S}). On the other
hand,
05 = L(T) D IIa3

aEP

=L (T) @ ]:[ L9
acd
a(S)=1

is the root space decomposition of g° relative to a maximal torus 7 con-
taining S. Hence

dim g5 = rank G + #@s.
Thus we have the desired conclusion.

Theorem 4 also implies that the number of positive roots whose kernels
contain S does not depend on the choice of a root system, ie. the choice
of T e &5 '

By the way, dim Zs(x)=rank G for any element x of a reductive group
G; and x is called regular if the equality holds. It should be remarked
that our definition is different from that of [1]. It is known that if x is
regular, then Z;(x)? is abelian ([5]). But since a maximal torus is a maximal
abelian subgroup, the converse is true for semi-simple elements.

ProrosiTion 5. Let x be a semi-simple element of a reductive group
G. Then x is regular if and only if Z,(x)° is abelian.

As an immediate consequence of Theorem 4, we have

CoroLLARY 6. The dimension of any semi-simple or regular conjugacy
class in a reductive group is even.

§ 3. Dimension of Z°.

Treorem 7. Let G be a reductive group and S a diagonalizable subset
of G with Z° # ¢. Then there exist (not necessarily distinct) irreducible
components F; and F, of %° whose dimensions satisfy the following equality.

dim Z4(S) = rank G + dim F; + dim F,

Proor. The proof consists of four parts.
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(a) Fix a maximal torus 7 and opposite Borel subgroups B and B~
relative to T. Set #=G/B, & =G/B~ and Z@=G|/N4«T). Define X by:
X={(B, ¢B~)€ #X #|g€ G}. Consider a morphism of G into F X &~
given by g~ (¢B, ¢#B7). It is a quotient onto its image X and the fibre
over (B, B™) is Ng(BYN Ng(B~), which is BNB =7T. X is therefore iso-
morphic to G/T.

Moreover we claim that X is an open subvariety of # X %~. To
verify this, first of all we note that the inclusion XC{(*B, ¢ B™)|g'¢’ € BU}
is an equality. Indeed, if g~'¢’=bu with b€ B, u € U™, then gu'=gh. Puth=
gb. Then "B~=¢B~, "B=%B. Define a morphism p ; GXG — G, by p((g.£"))
—g~'¢’. Then above fact shows that X is the image of p~'(BU~) under a
quotient morphism G X G — (G/B) X (G/B~). Since the big cell BU™ is open
in G, and a quotient morphism is open, it follows that X is open dense in
B X F.

(b) Now to prove the theorem, we may assume that S is finite. In
fact, we can choose a finite subset S, of S such that both &= %" and
Zs(S)=2Zs(S,) holds. (This is possible since Z4(S) and Z° are noetherian.)
If we put S,={sy, -+-- , S,}, then we have only to prove the theorem for
S,.

(¢) We write C(s;) for the conjugacy class of s;, They are irreducible
closed subvarieties of G. Let C(S,) be a subset of C(s;)X -++-- X C(s,) defined
by: C(S,)={(Csy, ------ ,%s,)|g € G}. Through a morphism of G to C(s;)X-----
X C(s,), given by gr> (55, , £5,), we have dim G=dim Z4(S,) +dim C(S,).
Put s=(sy, --*-- , 8,). For any subset 4 of G, we write ¥s€ A when each
Es(i=1, ------ , n) belongs to A. Define

U={(B, “B~, )€ FX F~XC(S,)|*B.*B~ 5y}

and put Uy=U,(XXC(S,)). Since ¢B,*B~=2T, Uy is equal to the set
{¢¢B, *B~, »)|*T >y} and it is not empty by the semi-simplicity of s. Let
p (resp. py) be a projection of U (resp. Uy) to C(S,). They are surjective.
Furthermore since the fibres over all points of C(S,) are isomorphic to
each other, we have

dim Uy = dim C(S,) + dim p3'(s)
= dim G — dim Z4(S,) + dim pz'(s) ------ (1)

On the other hand, there exists a surjective morphism X X C(S,) - %
X C(S,) with finite fibre. Let V, be the image of Uy under this morphism.
Then dim Vy=dim U,. Projecting V, onto the first factor, we have

n—times
dim Vy = dim & + dim (C(S,) (T X --+--- X TY)

But C(S,)(TX - XT)YT(C(s1)qT )X weners X(C(s,)aT) and the dimension
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of the latter is 0, because in general the intersection of a torus with every
conjugacy class is always finite ; it is easily verified by embedding G into
GL,. Thus we have

dim Vy=dim G — rank G. «-eerrveeemeeeinrenenann 2)
Hence by (1) and (2)
dim Z4(S,) = rank G + dim pz'(s) «ceoeeerereeenenes (3)

(d) Let %n =UF, be a decomposition into irreducible components.
; ‘
Then Fn X F 5 = F;XF,. Identifying p~'(s) and Z* X &5 by the
ij
isomorphism, we write px'(s)=U (F;X F;),X. Hence there exist F; and F,
ij
such that dim p3'(s) = dim (F;X F;),X. But since X is open, we have
dim p3'(s)=dim F;+dim F;. Owing to (3), these F; and F; are the com-
ponents which satisfy the requirement. q.e.d.

Combining the Theorem 4 and Theorem 7, we obtain the following
results.

Tueorem 8. Let G and S be as in the Theorem 7. Then there exist
irreducible components F; and F, of &%° such that

dim F; 4+ dim Fy = 2#{a a positive root|a(S)=1},

where the root system of the right-hand side is taken relative to any maximal
torus of G containing S.

CororLrary 9. Let G and S be as above. Then
dim Z4(S) < rank G + 2 dim Z°.

In particular, if the dimensions of all irreducible components of & S
are equal, then equality holds above. And

dim Z(G)S = dim .Z (Zs(S)?)

It is known that for any x € G, all components of &% * have the same
dimension ([6]).

Finally we remark that if G is not reductive, the conjecture stated in
§ 0 does not make sense. Indeed in case G=B, the left-hand side can be
strictly larger than the right-hand side. On the other hand, the left-hand
side can be strictly less than rank G as the following example shows; for
any integer n=3, define

1 «
U, = {( ) € GL (n, K))
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1c O
Let G be the direct product of a torus T and U,, and take x=(t, | ™. ™c|)
. 0 "-.‘..1

where t€ T and ¢ is a non zero element of XK. Then rank G=dim G=dim T
+n(n—1)/2, and dim Zz(x)= dim T +n—1.
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