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Intoroduction.

Let @ be the rational number field and k be an algebraic number field
of finite degree over Q. We denote by C, the idele class group of k. It
is well-known that C, is a locally compact abelian group. In this paper,
we shall consider the structure of C, as a topological group when k is an
imaginary quadratic field. Let R denote the additive group of the real
numbers with usual topology, T the multiplicative group of all complex
numbers of absolute value 1 with compact topology, and Gal(A4,/k) the Galois
grou of the maximal abelian extension A4, over k with the Krull topology.
Then it will be shown that

C. =T X R X Gal(A,[k),
where k is an imaginary quadratic field (Cor. 1 of Theorem 1).

Furthermore we shall see that even if the idéle class groups C, and
C,. are isomorphic, the ideal class groups of k and k' are not necessarily
isomorphic. In other words, the idele class group of k does not determine
the structure of the ideal class group of k.

§1. Preliminaries.

Let k¥ be an algebraic number field which has r; real infinite primes
and r, complex infinite primes. We shall denote by I, the idele group of
k, k* the subgroup of principal ideles, and C,=1I,/k* the idele class group
of k. An idele will be denoted by a=(a,)=(a, a;), where v runs all primes
of k, p all finite primes and 2 all infinite primes of k(A=1, ------ ,r, i1,
...... , Fit+ 1’2)-

As C, is a locally compact abelian group, its structure is determined
by the character group by virtue of the duality theorem. We now consider
the character group C¥ of C,. If y is a character of C, ie. a continuous
homomorphism of C, into T, we can regard it as a character of I, such
that X(k*)=1. Conversely a character y of I, such that X(k*)=1 is regarded
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as a character of C,. We consider the restriction of y to the infinite part

R*1C*"? of I,. Tt is known that there exist ;€ Z and 0, € RA=1, oo ,
ri+r;) such that

ritra f2 =
X((ay) = ﬁ (ﬁ) laxlv_l ", (a)) € R¥1C,
A=1 A

and then we call y a character of type (fi ¢.).

Now we shall deal with Grossencharacters. For an integral idéal m
of k, we denote by G(m) the group of fractional ideals in k, prime to m,
and S(m) the subgroup of G(m) which consists of principal ideals (&) with
=1 (mod m). A character ¢ of G(m) is called a Gréssencharacter mod m
if there exist /€ Z and ¢, € R (A=1, ----- , ri+rg) such that for any & € kX
with £é&=1 (mod m),

—r1+r2 Sal )fl o 110
@) =T (g ) 117
where o, are the embeddings of k into CA=1, ------ , ri+ry). ¢ is then

called of type (f; ¢,). We shall agree that two Gossencharakters are equi-
valent when they are identical on the common domain, i.e. ¢;~¢, if and
only if ¢;=¢, on G(m;m,), where ¢, is a Grossencharakter mod m; (i=1, 2).
Here we recall the one-to-one correspondence between characters of C,

and Grossencharakters of k. A character of C, of type (f,, ¢;) corresponds
to a Grossencharakter of type (—f; —¢;). For an integral ideal m= T] p®
of k(e,€ Z,>0), we put

Im)y={a=(a,)€IL;: a,=1 for p|m, a,=1 =1, ----- , Fitr)}

I(m)y={a=(a,) €I;: a,=1 (mod p°) for p|m}

U={a=(a,) €I,: a, is an unit in k}

Let y be a character of C, with conductor m. Each idéle a=(a,) determines
in an obvious manner an ideal of k; denote it by id (@). Therefore we have
the isomorphism G(m) = I(m)/(m)N U. Then we can define the Grossen-
charakter corresponding to y through this isomorphism. Conversely assume
that we have a Grossencharakter ¢ mod m of type (f,, ¢;). We can define
a character y of C, as follows:

ry=¢ Ga @ (14) ™ Jad =701, for any a=(a) e Lmy
xl@a)=1, for any a€ k™.

Since I(m)'k*=1I, we obtain a character y of C,.
The following lemma is well-known ([2] p. 184).

Lemma. Let y be a character of C, of type (fi ¢.).

The follbwing three assertions are equivalent :
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(i) gy is of finite order,

(ii) x(Dy)=1, where D, is the connected component of identity of C,,
f,=0 (2: all complex primes)

(1i) ©;=0 (2: all real and complex primes).

§ 2. The structure of C,.

Tueorem 1. Let k be an imaginary quadratic field and C¥ the character
group of the idele class group C,. Then

Ct=ZXRXT,

where Z is the additive group of rational integers with discrete topology,
R the additive group of real numbers with usual topology, and T, the tor-
sion subgroup of C¥ with discrete topology.

Proor. Let p be a prime ideal of k such that e 3= 1 (mod p) for any
unit ¢ (#) of k. We obtain a character ¢ of S(p) by defining

H(©) = (T§T> N

for any £€=1 (mod p). It is well-defined by our assumption on p. As the
index (G(p): S(p)) is finite, ¢ can be extended to a character of G(p). Take
one of them and again denote it by ¢. This is a Grossencharacter mod p
of type (—1, 0), then we define y,0y by the character of C, which corres-
ponds to ¢; .oy is of type (1,0).

Next we will define

¢ (@) =Na /77

for any ideal a, where N is the norm in k£ over @. Then ¢ is a Grgssen-
character mod 1 of type (0, —¢) and we put ., the character of C, which
corresponds to ¢. This is of type (0, ¢) and we have

Xeorey (@) =¢(id(a))|az| V-1,

for any idele a=(a,).
Now for any f€Z and ¢€ R, we define y,, as follows:

Xrred :X(1:£)X(0r¢)-
Xy is of type (f, ¢). Since
Xri+rarorte) — X (1201 * X f2r02)

for any f;€ Z and ¢,€ R(i=1, 2), the subgroup
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{X (f’¢)€Cl>ck: er; SDER}

is isomorphic to the additive group ZX R. Thus we can treat Z X R as the
subgroup of C¥. Let y be a character of C, of type (f, ©). As xexu
is of type (0, 0), it belongs to T, by lemma, that is C,=(ZXR)+:T;,. By
the same lemma, ZX RN T,=1. Therefore we have

Ct=ZXRXT, ~ (as groups).

Now it is well-known that C, = R X C?, where C;=I}/k* and I} is the
subgroup of all ideles of volume 1. Let H be the annihilator of Cj, i.e.

H={ye Ci : y(Co)=1}

We will prove that H=0x RX 1. In order to show it, it is sufficient to
prove the following three statements :

(1) HNZX0x1=1,

2) HOOXRXI,

(3) HNOXOXT,=1.

Indeed, let (a, b, ¢) be any element of H. There exists a natural number
n such that ¢"=1, then (na, nb, 1)€ H. By (2), (0, —nb, 1)€H, and so
(na, 0, 1)€ H; by (1), we have na=0, ie. a=0. It is shown c¢=1 in the
same way. Thus HCOX R X1. Hence we have H=0X R X 1.

Proor of (1). We will show y0,(Cl)5=1 for any f€ Z(##0). Let a
=(a,) (#1) be an element of I(p) NI;. If X0(a)5=1, it is obvious that
Xer0r(Ch)#1. Then assume that y¢no(a)=1. We put a’'=(a, za;)€I(p) N
°, where z€ T such that z/s£1. Then

too@) =968 (4 ) =g (d @) () 2=z 1.
lzazl ]azl
This shows that X0y (Cr)# 1.

- Proor of (2). We will show that y.,(Cs)=1 for any p€ R. If a=
(a,) € I, then N(id (a))=|a;|?. Therefore

X0y(@)=N (id (@))-v=1"2 |a,;|V-Te=1.

Proor of (3). We show that y(Cj)=~1 for any y € T,, +1.
As y+#1, there exists a=(a,)=(a,a;) € I, such that y(a)#=1. We can choose
a, € C* such that @’ =(a,, a;) € I). Then we have y(a’) =y(a)#1 because y(a,)
=y(ay)=1
Since C,=RXCj, then CF=R X (C))*. As we have seen,
Ck=ZXRXTy
and
H=0xRXx1.
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Therefore |
(CO¥*=C¥{H=ZXRXT/OXRX1=ZXT,.
Since (C* is a discrete group, we have
Cr=RXZXT, (as ‘topological groups).
This completes our proof.

CoroLLary 1. Let k& be an imaginary quadratic field and C, the idele
class group of k. Then

Co= T'X R X Gal (4,]k).

Proor. We have T, =(C,/D,)* by Lemma. From Theorem 1, duality
theorem, and class field theory, we have

C,=Z* X R*XTf=TxXxRXC,D,
=T X R X Gal(A,[k).

CoroLLaRry 2. For any imaginary quadratic fields & and &/, the follow-
ing two assertions are equivelent :

(i) Cy=Cy,
(ii) Gal (Ax/k) = Gal (A [K).

Consequently, for all imaginary quadratic fields %, except Q (4 —1),
with class number 1, the ide¢le class groups C; are isomorphic to each other

(cf. [1]).

CoroLLARY 3. Let %, be the idéal class group of k. Then there exist
k and k' satisfying the following conditions :

(i) C=Ch
(i) FE B

For example the ideéle class groups C, are isomorphic to each other

for k=Q( v —2), Qv —5), Q(/—23), Q( —4T), and Q( 4/ —71), but their

ideal class numbers are 1, 2, 3, 5 and 7, respectively (cf. [1]).

_ Tueorem 2. Let @ be the rational number field, C, the idele class
group of . Then

Co= R X Gal(4,/Q).
Proor. The proof is similar to Theorem 1.

Added in proof; Prof. Iwasawa has kindly written to me and remarked
that theorem 1 can also be shown by considering the structure of D,.
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