On Idèle Class Groups of Imaginary Quadratic Fields

Midori Onabe

Department of Mathematics, Faculty of Science, Ochanomizu University* (Received, April 10, 1978)

Intoroduction.

Let Q be the rational number field and k be an algebraic number field of finite degree over Q. We denote by C_k the idèle class group of k. It is well-known that C_k is a locally compact abelian group. In this paper, we shall consider the structure of C_k as a topological group when k is an imaginary quadratic field. Let R denote the additive group of the real numbers with usual topology, T the multiplicative group of all complex numbers of absolute value 1 with compact topology, and $Gal(A_k/k)$ the Galois grou of the maximal abelian extension A_k over k with the Krull topology. Then it will be shown that

$$C_k \cong \mathbf{T} \times \mathbf{R} \times Gal(A_k/k),$$

where k is an imaginary quadratic field (Cor. 1 of Theorem 1).

Furthermore we shall see that even if the idèle class groups C_k and $C_{k'}$ are isomorphic, the ideal class groups of k and k' are not necessarily isomorphic. In other words, the idèle class group of k does not determine the structure of the ideal class group of k.

§ 1. Preliminaries.

Let k be an algebraic number field which has r_1 real infinite primes and r_2 complex infinite primes. We shall denote by I_k the idèle group of k, k^{\times} the subgroup of principal idèles, and $C_k = I_k/k^{\times}$ the idèle class group of k. An idèle will be denoted by $a = (a_v) = (a_v, a_{\lambda})$, where v runs all primes of k, p all finite primes and λ all infinite primes of $k(\lambda = 1, \dots, r_1, r_1 + 1, \dots, r_1 + r_2)$.

As C_k is a locally compact abelian group, its structure is determined by the character group by virtue of the duality theorem. We now consider the character group C_k^* of C_k . If χ is a character of C_k , i.e. a continuous homomorphism of C_k into T, we can regard it as a character of I_k such that $\chi(k^{\times})=1$. Conversely a character χ of I_k such that $\chi(k^{\times})=1$ is regarded

^{*} Present address, Tokyo Metropolitan University.

as a character of C_k . We consider the restriction of χ to the infinite part $\mathbf{R}^{\times r_1} \mathbf{C}^{\times r_2}$ of I_k . It is known that there exist $f_{\lambda} \in \mathbf{Z}$ and $\varphi_{\lambda} \in \mathbf{R}(\lambda = 1, \dots, r_1 + r_2)$ such that

$$\chi((a_{\lambda})) = \prod_{\lambda=1}^{r_1+r_2} \left(\frac{a_{\lambda}}{|a_{\lambda}|}\right)^{f_{\lambda}} |a_{\lambda}|^{\sqrt{-1} \varphi_{\lambda}}, \qquad (a_{\lambda}) \in \mathbf{R}^{\times r_1} \mathbf{C}^{\times r_2},$$

and then we call χ a character of type $(f_{\lambda}, \varphi_{\lambda})$.

Now we shall deal with Grössencharacters. For an integral ideal \mathfrak{m} of k, we denote by $G(\mathfrak{m})$ the group of fractional ideals in k, prime to \mathfrak{m} , and $S(\mathfrak{m})$ the subgroup of $G(\mathfrak{m})$ which consists of principal ideals (ξ) with $\xi \equiv 1 \pmod{\mathfrak{m}}$. A character ϕ of $G(\mathfrak{m})$ is called a Grössencharacter \mathfrak{mod} \mathfrak{m} if there exist $f_{\lambda} \in \mathbb{Z}$ and $\varphi_{\lambda} \in \mathbb{R}$ $(\lambda = 1, \dots, r_1 + r_2)$ such that for any $\xi \in k^{\times}$ with $\xi \equiv 1 \pmod{\mathfrak{m}}$,

$$\psi((\xi)) = \prod_{\lambda=1}^{r_1+r_2} \left(\frac{\xi^{\sigma_{\lambda}}}{|\xi^{\sigma_{\lambda}}|}\right)^{f_{\lambda}} |\xi^{\sigma_{\lambda}}|^{\sqrt{-1}\varphi_{\lambda}},$$

where σ_{λ} are the embeddings of k into $C(\lambda=1, \dots, r_1+r_2)$. ϕ is then called of type $(f_{\lambda}, \varphi_{\lambda})$. We shall agree that two Gössencharakters are equivalent when they are identical on the common domain, i.e. $\psi_1 \sim \psi_2$ if and only if $\psi_1 = \psi_2$ on $G(\mathfrak{m}_1\mathfrak{m}_2)$, where ψ_i is a Grössencharakter mod \mathfrak{m}_i (i=1, 2).

Here we recall the one-to-one correspondence between characters of C_k and Grössencharakters of k. A character of C_k of type $(f_{\lambda}, \varphi_{\lambda})$ corresponds to a Grössencharakter of type $(-f_{\lambda}, -\varphi_{\lambda})$. For an integral ideal $\mathfrak{m} = \prod \mathfrak{p}^{e\mathfrak{p}}$ of $k(e_{\mathfrak{p}} \in \mathbb{Z}, >0)$, we put

$$I(\mathfrak{m}) = \{a = (a_v) \in I_k : a_{\mathfrak{p}} = 1 \text{ for } \mathfrak{p} | \mathfrak{m}, \ a_{\lambda} = 1 \ (\lambda = 1, \dots, r_1 + r_2)\}$$

$$I(\mathfrak{m})' = \{a = (a_v) \in I_k : a_{\mathfrak{p}} \equiv 1 \pmod{\mathfrak{p}^{e\mathfrak{p}}} \text{ for } \mathfrak{p} | \mathfrak{m}\}$$

$$U = \{a = (a_v) \in I_k : a_{\mathfrak{p}} \text{ is an unit in } k_{\mathfrak{p}}\}$$

Let χ be a character of C_k with conductor \mathfrak{m} . Each idèle $a=(a_v)$ determines in an obvious manner an ideal of k; denote it by id (a). Therefore we have the isomorphism $G(\mathfrak{m}) \cong I(\mathfrak{m})/(\mathfrak{m}) \cap U$. Then we can define the Grössen-charakter corresponding to χ through this isomorphism. Conversely assume that we have a Grössencharakter ϕ mod \mathfrak{m} of type $(f_{\lambda}, \varphi_{\lambda})$. We can define a character χ of C_k as follows:

$$\chi(a) = \psi \text{ (id } (a)) \prod_{\lambda=1}^{r_1+r_2} \left(\frac{a_{\lambda}}{|a_{\lambda}|}\right)^{-f_{\lambda}} |a_{\lambda}|^{-\sqrt{-1}\varphi_{\lambda}}, \text{ for any } a = (a_v) \in I(\mathfrak{m})'$$

$$\chi(a) = 1, \text{ for any } a \in k^{\times}.$$

Since $I(\mathfrak{m})'k^{\times}=I_k$, we obtain a character χ of C_k . The following lemma is well-known ([2] p. 184).

Lemma. Let χ be a character of C_k of type $(f_{\lambda}, \varphi_{\lambda})$.

The following three assertions are equivalent:

(i) χ is of finite order,

(ii) $\chi(D_k) = 1$, where D_k is the connected component of identity of C_k ,

(iii) $\begin{cases} f_{\lambda} = 0 & (\lambda : \text{ all complex primes}) \\ \varphi_{\lambda} = 0 & (\lambda : \text{ all real and complex primes}). \end{cases}$

§ 2. The structure of C_k .

THEOREM 1. Let k be an imaginary quadratic field and C_k^* the character group of the idele class group C_k . Then

$$C_k^* \cong \mathbf{Z} \times \mathbf{R} \times T_k$$

where Z is the additive group of rational integers with discrete topology, R the additive group of real numbers with usual topology, and T_k the torsion subgroup of C_k^* with discrete topology.

PROOF. Let $\mathfrak p$ be a prime ideal of k such that $\varepsilon \not\equiv 1 \pmod{\mathfrak p}$ for any unit $\varepsilon \not\equiv 0$ of k. We obtain a character ψ of $S(\mathfrak p)$ by defining

$$\psi((\xi)) = \left(\frac{\xi}{|\xi|}\right)^{-1}$$

for any $\xi \equiv 1 \pmod{\mathfrak{p}}$. It is well-defined by our assumption on \mathfrak{p} . As the index $(G(\mathfrak{p}):S(\mathfrak{p}))$ is finite, ψ can be extended to a character of $G(\mathfrak{p})$. Take one of them and again denote it by ψ . This is a Grössencharacter mod \mathfrak{p} of type (-1,0), then we define $\chi_{(1,0)}$ by the character of C_k which corresponds to ψ ; $\chi_{(1,0)}$ is of type (1,0).

Next we will define

$$\phi(\mathfrak{a}) = \mathbf{N} \, \mathfrak{a}^{-\sqrt{-1} \frac{\varphi}{2}}$$

for any ideal α , where N is the norm in k over Q. Then ϕ is a Grössen-character mod 1 of type $(0, -\varphi)$ and we put $\chi_{(0,\varphi)}$ the character of C_k which corresponds to ϕ . This is of type $(0, \varphi)$ and we have

$$\chi_{(0,\varphi)}(a) = \psi(\mathrm{id}(a)) |a_{\lambda}|^{\sqrt{-1}\varphi},$$

for any idèle $a=(a_v)$.

Now for any $f \in \mathbb{Z}$ and $\varphi \in \mathbb{R}$, we define $\chi_{(f,\varphi)}$ as follows:

$$\chi_{(f,\varphi)} = \chi_{(1,0)}^f \chi_{(0,\varphi)}.$$

 $\chi_{(f,\varphi)}$ is of type (f, φ) . Since

$$\chi_{(f_1+f_2,\varphi_1+\varphi_2)} = \chi_{(f_1,\varphi_1)} \cdot \chi_{(f_2,\varphi_2)}$$

for any $f_i \in \mathbb{Z}$ and $\varphi_i \in \mathbb{R}(i=1, 2)$, the subgroup

$$\{\chi_{(f,\varphi)} \in C_k^* : f \in \mathbb{Z}, \varphi \in \mathbb{R}\}$$

is isomorphic to the additive group $\mathbb{Z} \times \mathbb{R}$. Thus we can treat $\mathbb{Z} \times \mathbb{R}$ as the subgroup of C_k^* . Let χ be a character of C_k of type (f, φ) . As $\chi \cdot \chi_{(f, \varphi)}^{-1}$ is of type (0, 0), it belongs to T_k by lemma, that is $C_k = (\mathbb{Z} \times \mathbb{R}) \cdot T_k$. By the same lemma, $\mathbb{Z} \times \mathbb{R} \cap T_k = 1$. Therefore we have

$$C_k^* = \mathbf{Z} \times \mathbf{R} \times T_k$$
 (as groups).

Now it is well-known that $C_k \cong \mathbb{R} \times C_k^0$, where $C_k^0 = I_k^0/k^{\times}$ and I_k^0 is the subgroup of all idèles of volume 1. Let H be the annihilator of C_k^0 , i.e.

$$H = \{ \chi \in C_k^* : \chi(C_k^0) = 1 \}.$$

We will prove that $H=0\times R\times 1$. In order to show it, it is sufficient to prove the following three statements:

- (1) $H \cap \mathbf{Z} \times 0 \times 1 = 1$,
- (2) $H\supset 0\times R\times 1$,
- (3) $H \cap 0 \times 0 \times T_k = 1$.

Indeed, let (a, b, c) be any element of H. There exists a natural number n such that $c^n = 1$, then $(na, nb, 1) \in H$. By (2), $(0, -nb, 1) \in H$, and so $(na, 0, 1) \in H$; by (1), we have na = 0, i.e. a = 0. It is shown c = 1 in the same way. Thus $H \subset 0 \times \mathbb{R} \times 1$. Hence we have $H = 0 \times \mathbb{R} \times 1$.

PROOF of (1). We will show $\chi_{(f,0)}(C_k^0) \neq 1$ for any $f \in \mathbb{Z}(\neq 0)$. Let $a = (a_v)$ $(\neq 1)$ be an element of $I(\mathfrak{p})' \cap I_k^0$. If $\chi_{(f,0)}(a) \neq 1$, it is obvious that $\chi_{(f,0)}(C_k^0) \neq 1$. Then assume that $\chi_{(f,0)}(a) = 1$. We put $a' = (a_v, za_\lambda) \in I(\mathfrak{p})' \cap I_k^0$, where $z \in T$ such that $z^f \neq 1$. Then

$$\chi_{(f,0)}(a') = \psi(\operatorname{id}(a'))^f \left(\frac{za_{\lambda}}{|za_{\lambda}|}\right)^f = \psi(\operatorname{id}(a))^f \left(\frac{a_{\lambda}}{|a_{\lambda}|}\right)^f z^f = z^f \neq 1.$$

This shows that $\chi_{(f,0)}(C_k^0) \neq 1$.

Proof of (2). We will show that $\chi_{(0,\varphi)}(C_k^0)=1$ for any $\varphi \in \mathbf{R}$. If $a=(a_n) \in I_k^0$, then $N(\mathrm{id}(a))=|a_2|^2$. Therefore

$$\chi_{(0,\varphi)}(a) = N \text{ (id } (a))^{-\sqrt{-1}\frac{\varphi}{2}} |a_{\lambda}|^{\sqrt{-1}\varphi} = 1.$$

PROOF of (3). We show that $\chi(C_k^0) \neq 1$ for any $\chi \in T_k$, $\neq 1$. As $\chi \neq 1$, there exists $a = (a_{\mathfrak{p}}) = (a_{\mathfrak{p}}, a_{\lambda}) \in I_k$ such that $\chi(a) \neq 1$. We can choose $a'_{\lambda} \in \mathbb{C}^{\times}$ such that $a' = (a_{\mathfrak{p}}, a'_{\lambda}) \in I_k^0$. Then we have $\chi(a') = \chi(a) \neq 1$ because $\chi(a_{\lambda}) = \chi(a'_{\lambda}) = 1$.

Since $C_k \cong \mathbb{R} \times C_k^0$, then $C_k^* \cong \mathbb{R} \times (C_k^0)^*$. As we have seen,

$$C_k^* = \mathbf{Z} \times \mathbf{R} \times T_k$$

and

$$H=0\times \mathbf{R}\times 1$$
.

Therefore

$$(C_k^0)^* \cong C_k^*/H \cong \mathbb{Z} \times \mathbb{R} \times T_k/0 \times \mathbb{R} \times 1 \cong \mathbb{Z} \times T_k.$$

Since $(C_k^0)^*$ is a discrete group, we have

$$C_k^* \cong \mathbf{R} \times \mathbf{Z} \times T_k$$
 (as topological groups).

This completes our proof.

COROLLARY 1. Let k be an imaginary quadratic field and C_k the idèle class group of k. Then

$$C_k \cong T \times R \times Gal(A_k/k).$$

PROOF. We have $T_k \cong (C_k/D_k)^*$ by Lemma. From Theorem 1, duality theorem, and class field theory, we have

$$C_k \cong \mathbb{Z}^* \times \mathbb{R}^* \times T_k^* = \mathbb{T} \times \mathbb{R} \times C_k/D_k$$

= $\mathbb{T} \times \mathbb{R} \times Gal(A_k/k)$.

COROLLARY 2. For any imaginary quadratic fields k and k', the following two assertions are equivelent:

- (i) $C_k \cong C_{k'}$,
- (ii) $Gal(A_k/k) \cong Gal(A_{k'}/k')$.

Consequently, for all imaginary quadratic fields k, except $Q(\sqrt{-1})$, with class number 1, the idèle class groups C_k are isomorphic to each other (cf. [1]).

COROLLARY 3. Let \mathcal{C}_k be the ideal class group of k. Then there exist k and k' satisfying the following conditions:

- (i) $C_k \cong C_{k'}$
- (ii) $\mathscr{C}_{\nu} \not\equiv \mathscr{C}_{\nu'}$.

For example the idèle class groups C_k are isomorphic to each other for $k = Q(\sqrt{-2})$, $Q(\sqrt{-5})$, $Q(\sqrt{-23})$, $Q(\sqrt{-47})$, and $Q(\sqrt{-71})$, but their ideal class numbers are 1, 2, 3, 5 and 7, respectively (cf. [1]).

THEOREM 2. Let Q be the rational number field, C_Q the idèle class group of Q. Then

$$C_o \cong \mathbf{R} \times \operatorname{Gal}(A_o/\mathbf{Q}).$$

Proof. The proof is similar to Theorem 1.

Added in proof; Prof. Iwasawa has kindly written to me and remarked that theorem 1 can also be shown by considering the structure of D_k .

References

- 1) M. Onabe, On the isomorphisms of the Galois groups of the maximal abelian extensions of imaginary quadratic fields, Natural Science Report of the Ochanomizu Univ. Vol. 27, No. 2, 1976.
- 2) G. Shimura and Y. Taniyama, Kindai-teki-Seisū-ron (in Japanese), Kyōritsu, 1957.
- 3) A. Weil, On a certain type of characters of the idèle-class group of an algebraic number field, Proc. Int. Symposium of Algebraic Number Theory at Tokyo-Nikko (1955), 1-7.