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§1. Introduction.

Let (X, U, m) be a o-finite measure space and F be a convex cone of
all non-negative extended real-valued measurable functions. K. A. Astbury
has defined in [2] a potential operator on F with respect to a positive linear
operator on F which is not necessarily monotonically continuous and proved
that the potential operator has some of the familiar properties enjoyed by
potential operators obtained from kernels (e.g. Domination Principle, Riesz
Decomposition, and Balayage). Further he has shown that a positive linear
contraction of L, (X, U, m) determines a Hopf decomposition of the space
X into the conservative and the dissipative regions.

In this paper we shall define a potential operator on F with respect to
a resolvent of positive linear operators on F which are not necessarily
monotonically continuous and show that the potential operator satisfies the
domination principle. Further we shall give an example which shows that
the potential operator fails to satisfy the balayage principle and the Riesz
decomposition theorem fails to hold. Moreover we shall apply them to a
decomposition of X into the conservative and the dissipative sets and show
that, for a resolvent (V,),-, generated as usual by a strongly measurable
semigroup of positive linear contractions on L;(X, U, m), our decomposition
with respect to (V,),>o is identical with the well-known ergodic decomposi-
tion (cf. [47]).

Throughout this paper we shall consider that sets or functions are equal
if they are equal almost everywhere, and consider that equalities or inequal-
ities hold if they hold almost everywhere. The following lemma is funda-
mental.

Lemma 1. 1. (cf. [5, Proposition II-4-17) (I) Let (f.).cr be a sub-
Jamily of F. Then there exist two unique elements of F (up to equivalence
class), denoted by ess sup f, and ess inf f,, such that for f, g€ F

acl aecl

(a) fu[f for all acl &= ess sup f,=<f
ael
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(b) fao=g for all a€l & ess inf f,= g.

acl
(1) Let (A)ac; be a subfamily of U. Then there exist two unique ele-
ments of U (up to m-measure zero), denoted by ess sup A, and ess inf A,.
' ael ael
such that for A, BEU
(¢) A,CA for all a€1 &= ess sup A,C A4,

ael

(d) A,DB for all a€l & ess inf 4,DB.

aecl

§2. Potentials.

Let (X, %, m) be a o-finite measure and F the convex cone of all non-
negative extended real-valued measurable functions. A monotone map T from
F to F is called a positive linear operator on F if it satisfies

T(f+g) =Tf+Tg for every f, gEF,
T(af )=aTIf for every a€ R* and every fEF.

Remark that asco=c0c.a=co(a>0) and 0+co=0c0+0=0.

A resolvent on F is a family (V,),-, of positive linear operators on F
such that

(2. 1) VoVe=VVe, V=Vt (@q—D)V,Vyp

for every pair of real numbers p, ¢ satisfying ¢>p>0 and (V,f)(x) = <o
implies (V,f)(x)=oco for every ¢>0. By the definition we have immediatey
the following proposition.

Prorosition 2. 1. Let f, g€ F and p, q be positive real numbers. Then
ViV f+eg=V.f implies qV V,f+g<V,f.

For f€F, put
or={gE€F: Vpf+pVg=g for every p>0}.
Since ¢; 5 co, ¢, is not empty. We define the potential of f by
Vf=ess inf {g: g€ ¢} |

We also write V(4) for V(1,)%¥. The potential operator V. f+ Vf has the
following properties.

ProrosiTioN 2.2. (1) Vf=V,+pV,Vf (p>0),
(2) f=g implies Vf< Vg,

(3) V(f+g)=Vf+Vg aVf=V(af) (a€ RY),
(4) g=pV,g+f implies g=ZpVf-f.

Proor. (1) Let g€ ¢, and p be a positive real number. Then V, f+pV,Vf

1) We denote by 14 the characteristic function of a subset 4 of X.
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= fo+p V.g=g implies V, f+pV,Vf<Vf.
By (2. 1) we have :
Vof+qV (Vo f+pVoVE) =V f+pVo Vo f+pqV,V VS
=Vof+pV,Vf

for every ¢>0 and hence Vf<V,f+pV,Vf. Thus Vf=V,f+pV,Vf.

(2) Letf<g and h€ @, V,f+pV,h<V,g+pV,h<h implies Vf < h
and hence Vf<TVg.

(3) From (1) it follows that Vf+4Vg=V,(f+g) +pV,,(Vf+Vg) for
every p>0 and hence V f+ Vg=V,(f+g) +pV,(Vf+ Vg) for every p>0 and
hence V(f+g)<Vf-+Vg. On the other hand, since Vg=<V(f+g), we define

h:‘oo where V(f+g) =

V(f+g) — Vg where V(f+g)<co. '

Then A€ F is the largest solution of A+ Vg=V(f+g). The function V,f
+pV,h, for each p>0, is also an solution of the equation. Consequently

Vof+pV,h<h for every p>0 and Vf<h. Thus we have Vf+Vg<V(f+g).
Further, from (1) it follows that

Volaf ) +oVp(aVf)=a(V, f+pV,V f)=aVf

for every a>0 and p>0, whence V(af)<aVf. We have also V(—1~f) <
a

1 Vf. Consequently V(af)=aVf. It is trivial that the equality holds for

a

0.

(4) Letg=pV,g-+f. Since V,g=pV,V,g+V,ffor every ¢>0, it follows
from Proposition 2.1 that V,g=qV,(V,8)+V,f for any ¢>0 and hence
Veg=Vf. Consequently g=pV,g+f =pVf+f.

A subset ¢ of F is a called a V-class for f€F if
(i) V,f €¢ for every p>0,
(ii) g€ ¢ implies pV,g+ V,f€ ¢ for every p>0,
(ii1) (g4):c1C ¢ implies ess sup g:€ 0.

i€

a

Since the intersection of V-classes for f is again a V-class for f, there ex-

ists the smallest V-class ¢; for f. The following characterization of potential
is useful.

Lemma 2.1. Vf=ess sup {g: g€e}.
Proor. Since & is a V-class for f, we have pV,(ess sup g)+V,f =
geef

ess sup g for every p>0. Consequently Vf < ess sup g. On the other hand,

. gesf - g(—:sf
put o={g€e;s g<Vf}. Then ¢ is a V-class for f contained in e, Since

e; is the smallest V-class for f, it follows that ¢;=¢, and hence ess sup g
geef

< Vf. Thus we have the conclusion.
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A positive linear operator T on F is called monotonically continuous

if it has the following property.
Let (f,) be an increasing sequence of elements of F. Then TF, 1 Tf.

ProrosiTioN 2.3. Let (V,),50 be a resolvent of monotonically continuous
positive linear operators on F. Then Vf=lim V,f.
p—0

Proor. Let f be an element of F. According to (2.1) the function

p — V, [ is decreasing. Put
Vof=ess sup V,f=lim V,f.
p>0 p—0

Since V, is monotonically continuous, it is easily verified that
Vof: fo+PVpV0f (P>O)-

Hence Vf < V,f. Further, V,f€ ¢, for every p>0 implies V, f= essosup Vof
. >
€e¢;. From Lemma 2.1 it follows that V,f < Vf, and hence V,f=Vf.

ProposiTioN 2. 4. %( pVo)'f L pVf+f. The equality holds if V, is
n=0

monotonically continuous for every p>0.

Proor. By the definition of e;, we have 0.2 (pV,)"V,f €e; and con-
: n=0

sequently %(pr)"fo_S_Vf. Hence %(pr)”fngf—kf. If V, is mono-
n=0 n=0

tonically continuous, we have

PYy (2 PV +f= 2 (pV)T.

n=0

From Proposition 2.2 it follows that i (pV)'f = pVF+f.
n=0

THEOREM 2. 1. VV,f=V,Vf for every p>0.

Proor. Let p be an arbitrary positive integer. From Proposition 2.2
it follows that V,f+pV,Vf = Vf and hence pV,V ,Vf + V,V.f= V,Vf for
every ¢ >0. According to Proposition 2. 1 the inequality gV, V,Vf+ V (V,of)
<V,Vf holds and therefore VV,f<V,V/) On the other hand, set

o={g€e;: PVg+V, /28 VgSVV,of}
Then we shall show that ¢ is a V-class. (i) Using (2. 1) we have
VaVof=V Vo f SVVof and pVoVof +Vof=Vof+qVoVof SVof (9>0).
Hence V,f€¢. (ii) Let g be an element of . It follows that

VoqVg+V F)SqV VVof+VpVof= VVof
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and
PV(qVg+Vof )+ Vo f=pVeqV,g+ (Vo Vof+ Vi f)
=pVqVg+ @V Vo f+Vf)
=qV(pVg+ Vo f)+Vof
=qVe+V,f

whence gV g+ V,f €. (iii) Let (g,)D¢. Then
pVp(ess sup g,)+ Vo f = ess sup (pVy8.)+ Vof
= ess sup (pV,og.+V,f)

= €SS SUP Za»

and
Vp(ess sup g.)< Vy(ess sup (pV,ogutVyf))

SV(eVVof+Vof)
=(pVV+ V) Vo f=VV,f.

Thus (i), (ii) and (iii) of the definition of a V-clasi hold.
By the minimality of ¢;, we obtain ¢p=¢,. Since Vf€ ¢, we have V,Vf < VV,f,

A function f in F is called supermedian (resp. invariant) if for every
p>0 pV,= f(resp. pVof=f).

TeEOREM 2.2. Let g be an invariant function satisfying g< Vf. Then
g+Vr="Vf.

Proor. Put
5= [® where Vf=oo
Vf—g where Vf<oo.

Then A€ F is the largest solution of 2z+g=Vf. Since pV,h+ V,f is another
solution for every p>0, we have pV,h+V,f <h and hence Vf<h. From
the definition of 4 it follows that Vf+g<Vf and consequently Vf+g=TVf.

The support of f€ F, by definition, is the set {f >0} and denoted by
supp f.

Tueorem 2.3 (Domination principle) Assume thvt pV,g < g and Vf
-}—L f< g on supp f. Then Vf-+ —l—f < g everywhere.
p p

Proor. Put
h=min(V/+-—f, g)= min (VF+—f, g+ 1),
p D p
Then we have

PVt f < pr(Vf+if) v+ Loy Ly
D 14 ¥4 D
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and also

PVt f <pVogt-tr<g+ -1 f
p p p
Hence prh-l——Lfé min(Vf—I——l—f, g-l'—l——f) =h.
p p p
From Proposition 2.1 if follows that A=pV (Lf) +—1——f: Vf—}—if
p p p

and hence g= Vf+ Lf.
p

CoroLLARY 2. 1. Assume that f is dominated by a supermedian function
h with h<co. Let g be a supermedian function satisfying

Vf < g on supp f.
Then Vf < g everywhere.

Proor. Since Vf + —l——fgg—l——l-— h on supp f for every p > 0 and
p p

g—{——Lh is supermedian, it follows from Theorem 2.3 that
p

Vf+—1—f§g +_;z—h for every p>0.
p

Converging p to oo, we have Vf =< g.

- COROLLARY 2.2. Assume that f is bounded and that 1 is supermedian.
Then, for a€ R, '

(i) Vf< Vg+a on supp f implies Vf < Vg-+-a everywhere,
(i) V(4)=<a on A implies V(A)<a everywhere.

Proor. (i) Since Vg and a are supermedian, the conclusion follows
immediately from Corollary 2.1. (ii) is trivial. '

CoroLLARY 2. 3. Suppose that there exists v € F satisfing 0<v<oco and
pV,v<v for a real number p>0. Let A be an element of U with V(A)< co.

Then there exists an increasing sequence (A,) of U satisfying NA,=A and
n=1

Vid) =2
D

Proor. Put 4,=AN{pV(4)+1,Znv}. |
Then
PV(A)+14=pV(4)+1,=nv on 4,.
From Theorem 2.3 it follows that
PV(A)+1,,<nv everywhere

and hence V(4,) <% . Since V(4)<oo, we have .GAnzA.
4

u=1
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ExampLe. (cf. [2, Example 3.47) Let X={0, 1, 2, ---}. Let U be the
family of all subsets of X and let m be a probability measure having posi-
tive mass at each point of X. Let p be a positive linear functional on
L.(X, U, m) satisfying p(1)=1 and u(1,)=0 where A4 is a finite set.

For each f€ LZ, set
f(x) where x=>1

Tf (x) =
) p(f) where x=0.
Further, define
1 Tf where f€ L}
V,f={p+1
co where f€ F\LZ.

Then (V,),~o is a resolvent of positive linear operators on F and has the
following properties.

(1) V, is not monotonically continuous. In fact, put 4,={1, 2, ---, n}
and A={1, 2, ---}. Then 14, 11, But V,(14)(0)=p(ls)=0 and V,(1,)(0)

1 1 .
=——_p(l,)=—->0. Therefore lim V,(1,,)# V,(1,).

P+l /"( A) P+l " p(A) p( 4)

(2) Vf=1If for all f€ L. In fact, since pV,If+ V,f = If for each

p>0, Vf < Tfholds. il Tf=V,fce, implies Tf=ess sup {%I—Tf: p>0}
D

€e;. Hence If < Vf.

(3) Let f€ L be invariant. Then f=0. This is trivial.

(4) The Riesz decomposition theorem fails to hold. In fact, the super-
median function f defined

__ [0 where x=1
/) _{1 where x=0

is not decomposed into the potential part and the invariant part.

(5) The potential operator V fails to satisfy the balayage principle.
In fact, let f=1and A={0}. Then Vf(0)=1. But VA(0)=0 for any A€ L}
satisfving supp ~A={0}. Therefore there is not A€ F such that VA VS, Vh
=Vf on A and supp ADA.

§ 3. The ergodicde composition.

Let (X, ¥, m) be a o-finite measure space and (V,),., be a resolvent
of positive linear operators on F. Throughout this section we assume that
there exists a supermedian function v with 0<<v<oco. The set defined

D=ess sup {4€U: V(4)<oo}
is called the dissipative part of X and C=X\D is called the conservative
part of X.

Tueorem 3.1. Suppose that supp fCC. Then for each p>0 pVf + f
takes only the value 0 or oo.
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Proor. Let p>0 and m€ N. By the assumption there exists a super-
median function v with 0<v<co. Put, for each n€ N,

A= {pVF+f < min {f > —1.

Then 1,,<nf and V(4,)<nVf. Hence pV(4,)+ 14, < pnVf+nf<n(pVf+f)
=mnv on A,. From Theorem 2.3 it follows that p¥(4,)+ 1,4, =mnv every-
where. Therefore V(4,)<<oo. Since 4,CC, we obtain 4,=¢ and also

(PVf+f < mn{f >0t=Ud,=9.

Since 0<v<<co, we have

PVf+fIn{f>0}=¢
and consequently pVf+f=co on supp f. Further, define

_ {oo where pVf+f=o0

g =
0 eleswhere.

The inequality g< pVf-+f implies pV,g< p?V,Vf+pV,f=pVf. Since g takes
only the value 0 or oo, so does pV,g, Therefore we have pV,g<g. Since
pVf+f=co on supp f, it follows that pV,g+f <g. From Proposition 2.2
g= pVf+f holds. Thus we have g=pVf+f. Consequently the function
pVf+f takes only the value 0 or oo.

CoroLLARY 3.1. Suppose that supp fCC and f<oo. Then Vf takes
only the value 0 or co.
This corollary is an immediate consequence of Theorem 3. 1.

TueoreM 3.2. Let g be a supermedian. Then pV,g=g on C for each
p>0.

Proor. Let p>0. Set 4,=CN { pVog+ s < g} for each positive in-
n

teger n. Then pV,(ng)+1,,<ng and hence

PVpVy(ng)+ V(1) < Vy(ng) for each ¢>0.
From Proposition 2.1 it follows that

gV Vo(ng)+ V(14,) = Vy(ng) for each ¢>0,
whence V(4,) < V,(ng) = nV,g. Since 4,CC, we have, by Theorem 3.1,
pV(4,)+14,=0 or oo. Since V(4,)<nV,g<co on A4, we have pV(4,)+
1,,=0 on A4, and hence 4,=¢. CN{pV,g<gl=UA4,=¢ implies pV,g=g
on C.

THEOREM 3.3. Let f be an element of F. Then Vf takes only the value
0 or co on C.

Proor. Let fEF. Set
p={gEF: g=Vfon C, pV,g<g for each p>0}.
Then Vf€ . Put h=ess inf {g: g€ ¢}.
Then pV,h<h for each p>0. It follows from Theorem 3.2 that pV,hi=h
=Vf on C. Also
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qV,(pVyh)=pV,(qV h)=pV,h for each ¢>0.
Consequently pV,A€ ¢. The relation pV,A<h and minimality of 4 imply
pVyh=nh for each p>0. By Theorem 2.2 we have Vf+hA=TVf. Especially
2Vf=Vf on C whence Vf=0 or co on C.

Let (X, ¥, m) be a ¢-finite measure space and (T,),., be a strongly
measurable semigroup of positive linear contractions on L; (X, U, m) = L;.
It is known (cf. [3, p. 686]) that for every f€ L; there exists a function
g(t, x) measurable on [0, oo) XX (which respect to the product of m and
Lebesgue measure) such that for almost every fixed ¢ the function x> g(z, x)
belongs to the equivalence class of T,f. Moreover there exists a set N(f)
cX with m(N(#))=0, independent of ¢, such that if x ¢ N(f) then the func-
tion ¢+— g(¢, x) is Lebesgue integrable ober every finite interval (a, b) C (0,

.
oo) and the integral jg(t, x)dt, as a function of x, belongs to the equival-

b
ence class of S T, fdt.

For every fOL, and p>0, put
U,f = re-mn fdt.
0

Then U, is a bound linear operator on L; with ||U,||; _£_~1—. If V, is the
b
adjoint operator of U, V, is a bounded linear operator on L, with || V||«

g_.l_. We remark that V, is monotonically continuous on L, for every

b
p>0. The operator V, can be extended to a positive linear operator on F.

For f€ F, define
Vpof=lim V,f,

where (f,) is an increasing sequence of L convergent to f. Clearly the
definition is independent of the particular sequence (f,). The positive linear
operator ¥V, on F is monotonically continuous and (V,),», satisfies (2.1).
If the conservative part (resp. the dissipative part) of X with respect to the
resolvent (V,),so is C(resp. D), we have the following theorem.

TueoreM 3.4. Let f be an element of Li. Then
limS:th' dt=0 or co on C

b—co

and
b

lims T,fdt<co on D.
0 .

b—soco

Proor. Let f€ L and A€, Then, by Fatou’s lemma and Fubini’s
theorem,

L <lim S” T.f dz) dm= }{rgylA(ij, 7 dt )dm

b—co JO 0
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= [im SO (S(Tt ) lAdm)dt.

b—co

Also, using Proposition 2.3 we have
j FV (A4) dm= limg FV1,) dm= limS(Up ), dm
p—0 p—0

— lim limS 1A(Sbe-w thdt)dm
0

=0 b

— lim limre -t (S(T, 1, dm) dt

b0 p-0 JO

= lim S:(S(th) 1, dm) .
Hence
L })Lrg (3‘: T;fdt) dm:SfV(A) dm for each f € Ly and A€ ¥.
Let A be an arbitrary .measurable subset of C. Then, by Corollary 3. 1, we
have

aL lim S:thdt )dm:Sf(aV(A)) a’m:Sf V(A)dm= L lim :T, fdt)

b
for any real number a>0. If J (lim T, f) dm < oo, thenj (lim T.f dt)
A 0 A

b0 b—o0

. b
dm=0 and hence lim | T,f dt=0 on A.
0

b—co

Thus it follows that

b
lim| T,fdt=0 or oo on C.
0

b—oo

Further, let 4 be a subset of D with V(1,)<oo. It follows from Corollary

2.3 that there exists an increasing sequence (A4,) of U satisfying GA,,:A
n=1
and V(4,)<n.
b
| (lim TJdt)dm:J.fV(An) am < nl| £1ls
An 0

H—oo

implies

tim { (T, ) dt < o0 on 4,
Hence o

lim : (T,f)dt < oo on A.
Consequently ~

%iﬂl‘ P: (T, f)dt < oo on D.

Remark. From Theorem 3.4 it follows that under the previous as-
sumptions our decomposition with respect to the resolvent (¥,),~, is identical
with the well-known ergodic decomposition (cf. [4, Theorem 2. 1]).
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