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§1. Introduction.

As to the master and the Langevin equations, two types of equations
for each of them are known ; the one contains a term with time-convolution®?
and the other does not?-34,

We consider two simple typical example models to examine which type
of equations is more suitable for each model when we make approximations.
As the models, we treat a harmonic oscillator with an external perturabtion
causing the frequency modulation (adiabatic transitions)? in the case of the
master equation, and that with external perturbations causing non-adiabatic
transitions®’-® in the case of the Langevin equation.

In §2, two types of basic equations are derived for each model, and
in §3 their solutions are discussed. We compare solutions of the exact and
the approximate equations numerically, and show the results in figures.

In conclusion, we find that for our first model with adiabatic transitions
the time-convolutionless type of equations gives exact behaviour of the system
in the lowest “Born approximation”, whereas the time-convolution type gives
only approximate behaviour which coincides with the exact one only in the
narrowing limit. For our second model with non-adiabatic transitions, how-
ever, we find the opposite situation, in which the time-convolution type gives
exact behaviour in the “Born approximation”. Thus the better choice between
the two types of formulae depends on the structure of systems, and hence
we should be careful in discussing the high-frequency or the short-time
behaviour of a system by making use of one type of the master or the
Langevin equation in its approximate form.

§2. Two Types of the Master and the Langevin Equations

Let us consider a system perturbed by a random force. We assume a
stochastic Hamiltonian of the form

(1) = Fo+ ), 2. 1)
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where 57, denotes the Hamiltonian of the system alone and 4 (¢) an ex-
ternal perturbation which is a random function of time ¢. The motion of
this system is governed by the stochastic Liouville equation for the density
matrix of the system

W(t) = —iLW(s), (2.2)

where L=Ly,+ L(¢) is the stochastic Liouvillian corresponding to the Hamilt-
onian (2.1). We are interested in the averaged behaviour of the system
described by the density matrix p(¢) obtained by averaging W(tf) over the
random process F(f). Two types of equations of motion for o(f) have
been derived :

4
6(8) = —i(Ly-+<Ls(D))5) 0(2) —jo deX(2)p(t—1), (2. 3)
which we call the time-convolution type, and

0() = —i(Lo+<{L1(8)7 5)0() — ()0 (2), (2.4)

which we call the time-convolutionless type.

Similar discussion has been done in the Heisenberg picture too. How-
ever, in place of a stochastic system, let us now take explicitly into account
the origin of a stochastic force, a heat bath; that is, let us consider a system
in contact with a heat bath. The total composite system is assumed to have
a Hamiltonian

H=Hs+ X+ Hsp (2.5)

where 7 is a Hamiltonian of the system, 5% the bath Hamiltonian, and
s the interaction between them. Two types of Langevin equations for
an arbitrary dynamical variable 4 have been derived :

A(t)= 6B GLY ,A(0) +f° de &2 & (2) A(0) - Kin(H), 2. 6)
0
which we call the time-convolution type, and
A(@®) =" LY 5 A0)—e'™* (1) A(0) + K (2), 2.7)

which we call the time-covolutionless type.

Egs. (2.3) and (2. 4) are both exact, and they are equivalent with each
other. But, if we make any approximation, this equivalence will be broken
down. We shall find that which of Egs. (2. 3) and (2. 4) will give the better
approximation depends on a detailed structure of the random external force.
With respect to the pair of Egs. (2.6) and (2.7), the situation is the same.

To see the situation in detail, let us confine ourselves to simple models
and to the “Born approximation”, in which we retain terms up to the second
order with respect to the stochastic force or the interaction. Egs. (2. 3) and
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(2. 4) will be applied to Kubo’s model of the random frequency modulation®,
and Egs. (2. 6) and (2.7) to the problem of a harmonic oscillator with an
interaction which causes non-adiabatic transitions.

Let us consider Kubo’s oscillator model first. The complex coordinate
x(?) of this classical oscillator is assumed to obey the stochastic equation
of motion

d

L x(t)= {0+ ga1(0)) x(0), (2. 8)

where we have introduced a coupling constant g explicitly. w, is a fixed
characteristic frequency, while w(#) is assumed to be a stationary Gaussian
process with vanishing average. This equation of motion is not the Liouville
equation, but has the same structure as the latter : x(¢) corresponds to W(z)
of Eq. (2.3), w, to —L,, and gw,(?) to — Ly(¢). v

We are interested in the averaged coordinate {x(#))z which obeys the
equation of motion |

d
dt

D) a={iv—g*[ O de}x(D) 2.9)

where we have introduced the correlation function

D(z1—179) =< w(t1) 01(72)) 5. (2. 10)

The exact solusion of this equation is
(x(8)> 5= exp {iwy t—g? f (t—7) B(e)dz} x(0). @.11)
0

In the “Born approximation” for this model, the convolution type equa-
tion (2.3) reduces to

d
dt

(D)5 =iwo<x<r>>3—j; dr Xo(t—) @)y, (2.12)

where the kernel is given by
Xy(t—2)=@(t —1) eteot=®, (2.13)

The exact equation (2.9) is not reached within this approximation.
On the other hand, the convolutionless type equation (2. 4) gives in the
“Born approximation”?,

d

7 x(O) p=iwy {x(£)) 5 —g*P2(2) {x(2)) 5, (2. 14)

where

¢a)= | dx (o) 2.15)
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We find that this approximation gives already the exact one (2.9): the higher
order terms in ¢(¢) should all vanish® owing to our assumption of Gaussian
process.

Next, we consider a quantal harmonic oscillator interacting with the
heat bath. We take the Hamiltonian (2.5) composed of the forms

Hs=wata, (2. 16a)

HB= E} wy, b by, (2. 16b)
and

Hsp= ; (£ bf a4k, by a*), (2. 16¢)

where a and a* represent the annihilation and the creation operators for
the harmonic oscillator, while b, and b} those for the bath; k, and &F are
coupling constants. Making use of the expressions (2. 16) in Egs. (2. 6) and
(2.7) in the “Born approximation” with respect to Lgz, we obtain the time-
convolution type and the time-convolutionless type of Langevin equations
for a(?)

(i —I-z'a)o> a(t)+ > |/ck|zjt dre v a(t—t)= —i X ke by, (2.17)
. 0 i

dt
and
(%“"l'wo) a(t)+2 I/cklzsz dre=" 0% a(t)= —iXk, € "% by,  (2.18)
2 0 k
respectively.

Eq. (2.17) of the time-convolution type coincides with the exact result
obtained by Scully and Whitney®: we can prove that the higher order terms
with respect to Lgp in the perturbational expansion of ¢, () in Eq. (2. 6)
vanish.%

§3. Numerical Calculations and Discussions

Two types of equations have been derived for the two special models
in §2. In this section, we shall compare two solutions of these equations
for each model.

Let us first discuss Kubo’s model, and for simplicity let us further
assume the process w;(?) to be Markoffian, i.e.?.

B(c) = 4 e/, (3. 1)

where we have defined the amplitude and the correlation time of modulation
frequency :

Ad={wDY¥ and fc=_jTj°°drq;(f>. (3.2)
0
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Then, the second order equatiori obtained from the convolution type equa-
tion (2.2) reads as

A x0)r= x>0~ @AY de oxp (ion——) =] 0 3.)

and has the solution®, which we call the “truncated solutibn’:’ for this model,
eimot
—{1—(1—4a?)?} g~ 1+ a—teniz2] ‘/2’0] x(0), | (3.4)

x()>s= [ {14 (1 —4a2)?} g~ 0+ Qrtamizz) t/é:c

where we have introduced the parameter
a=gdr,. (3. 5) '

On the other hand, the exact equation (2.9) and its exact solution (2.11),
which are in accord with those in the “Born approximation” for the con-
volution type, become, respectively®,

"57<’“ O = {io——L (1—e-r)  x@Dn 3. 6)

Tc
and

(ix(t»B’:exp {iwot—az( t

Te

femtre_ 1)} x(0). 3.7)

We show in Figs. 1~3 the curves of <{x(¢)) e ***/x(0) given by the exact
and the truncated solution, Eqs. (3.7) and (3.4); for a set of values of a.
The case a1 corresponds to the narrowing limit, at which both solutions
coincide.

* =001
Te= Tr /10F

EXACT .
TRUNCATED

Tr 4 Ty

-1

Fig. 1. «=0.01. Two curves are almost exponentially decaying and coincide very

well with each other for any time ¢. This case corresponds to the narrowing limit.

7¢ is not shown as it is very small. The relaxation time 7, is given by cr=1/g24%c
in Figs. 1~3.
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Te Tr LTy

-1
Fig. 2. «=0.5. The exact curve decays monotonously, whereas the truncated
one begins to oscillate at this value of . Two curves coincide for <.

®=20.0
Tr=Tc/L00

T4

-1
Fig. 3. «=20.0. The exact curve is nearly Gaussian. The truncated one oscil-
lates slowly and decays slowly. Two curves coincide only for £<z./50.

Now let us proceed to the case of harmonic oscillator. We compare
the exact equation of time-convolution type (2.17) and the truncated equa-
tion of time-convolutionless type (2. 18). Putting

ZOEDM LA (3.8)

we rewrite Eq. (2.17) as
a(8) = —z'cooa(z)—g: dt o(2) a(t—1)+ K(0). (3. 9)

In order to obtain explicitly a solution of Eq. (3. 9), we assume a Lorentzian
density of states:

AZ

_— 3.10
®* -+ D? ( )

D&l 5(w—wk):£
k T

Then, we have the kernel
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— ® D A2 —tor —_— —Dr
go(f):g_m_;m o1 dr = A ¢ P, 3. 11)
The correlation time 7z, of the heat bath is given by
1
= dr o(z) = —. 3.12
— b # o= (3. 12)
If we change the variable a(¢) into
A(t)=e " a(r) ; (3.13)
then Eq. (3.9) is transformed into
Aty = —j; £ oD (1 7) de+K(2). 3. 14)

The solution of Eq. (3. 14) is given by

{A@0)rz= {(v+D—iwy) € —(p+D—iwg)e*'} A(0),  (3.15)

where v and p are the two roots of the equation
S+ (D—iwy) S+ 4£=0. (3.16)

Similarly, we can calculate the solution of the truncated equation (2.18).
In this case, we have

A(f)= _ﬁ de & oD A(1) - K(2), (3.17)

and obtain the “truncated solution”

Vi ( 1 — eti@o=D>t
D D'—l(l)o

<A(t)>=exp[ , —r)]A(O). (3. 18)

lwo—

We plot in Figs. 4~7 the curves of Re{A(?)>/A4(0) for the exact and the
truncated solution, Egs. (3.15) and (2.18) and for a set of dimensionless
parameters

Q=2 and 4= H‘fzgz (@=4t,). (3. 19)

In this model the narrowing condition is given by &< 1, and in th1s limit
both the solutions (3. 15) and (3. 18) behave like

CA(e)y ~emevre,
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Fig.(4) ®=1.0
£0.=100.0
Te=

1 _t
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]

4T,

Fig. 4. 4=1.0x1075. Two curves are of the damped oscillation type and coincide
with each other for any time ¢. This corresponds to the narrowing limit.

7¢ 1s not
shown as it is almost zero. 7, is given by =1+ 2%)z¢/a? in Figs. 4~7.

Fig. (5)

X = 20.0
0. =100.0

400
EXACT Tc= 1007 °F
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1

4T,

Fig. 5. @=4.0x10"% Two curves begih to have different periods and decay
constants. They coincide for #<3zc.

*'=20.0
n=30.0

\ TRUNCATED
EXACT

10

Tc

Tr

f

[

4T,

Fig. 6.

the exact curve.

&=3.7x10-2,

Two curves coincide for ¢<202.

Note the depressions at the lower peaks of oscillation of
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Fig. (7) & =10.0
n.=10.0

_100
Te=q01 Tr

XA LN N/
VL \ N\

EXACT

lin '
| -CC“ Tr ATr

Fig. 7. &=0.99. The difference of the exact curve from the simple damping
oscillation type is very evident, whereas the truncated one may be regarded as the
simple damped oscillation. Two curves coincide for r<1/2.

In view of the results given above we should note that for a system
with the interaction causing adiabatic transitions, such as Kubo’s model, the
time-convolutionless type of equations is expected to give a better solution
even in the “Born approximation”, whereas the time-convolution type gives
only a poor one in that aprroximation. Unless the narrowing condition is
satisfied the “truncated solution” behaves differently from the exact one and
is valid only for a very short time. For the other model with the inter-
action causing non-adiabatic trasitions, however, we shall find the opposite
situation. Therefore, we should appropriately choose one of the two types
of equations case by case. However, it is an open question which type of
equations, the time-convolution or the time-convolutionless type, we should
apply to the system having simultaneously both types. of the interactions
discussed above.

We are indebted to Professor N. Hashitsume for his valuable advices
and careful reading of the manuscript. We are also grateful to Professor
F. Shibata for his enlightening discussions.
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