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§0. Introduction

Let & be an algebraic number field, O, the maximal order, R
an order of ¢ with the conductor f, j an ideal of R, O(j) the set
of elements £ek such that &5 is contained in 7, namely the largest
order of which 7 is an ideal. We call j R-proper if we have O(j)=R
and R-regular if we have ajCR, (a7, f)=R for some element « € k*.™®
Now it is clear that 7 is R-proper if it is R-regular. In this paper,
we are going to consider whether the converse is true. Our result
is as follows: if k is a quadratic number field, 5 is R-proper if and
only if j is R-regular (§2); if & is an algebraic number field of
degree greater than 38, there is an example of R-proper ideals which
are not R-regular (§38). In order to prove this, we shall give a
local characterization of R-regularity (§1). Incidentally we can de-
fine R-invertibleness; we call R-ideal 7 R-invertible if there exists a
fractional ideal 5’ of R such that 77'=R. In reality, we have ob-
tained an example of an ideal which is R-proper, but not R-invertible
(Proposition 2). If =38 and p satisfies certain conditions, R -inverti-
bleness implies R,-regularity. But in general case, we could not
decide whether this is so or not (§ 4).

§1. Non-maximal orders of %,

Let & be an algebraic number field, O, the maximal order, R
an order of %k, 7 an ideal of R. For any prime number p, we con-
sider k,=k®eQ,, 0,=0,8:;Z, where Q, is the p-adic number field
and Z, is the maximal order. It is obvious that %, is Q,-algebra,
R,=R®:Z, an order of k,, j,=j®.Z, an ideal of R,. On the other
hand, if (p)=po---pgs is the decomposition of (p) into prime ideals
in k& where p, is a distinet prime ideal dividing (p) (1=i=g), we have
the following isomorphism @, of k, onto k,D---Dk, where k,, is

(%) Usually the definition of regularity is as follows: an ideal j of R is regular if
(7, f) =R. Our definition slightly generalizes the usual one.
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the p,-adic number field 1=1<59).

VQP: k@qu'—’k,l@ *e @kpg_
a’®>“*_) (Cl(a’))"y °t % Cg(a))")

where C, is a fixed isomorphism from % into &,y (1<i=g). At this
time, we have 9,00,)=0,®---@0,,, hence O, is the maximal order
of k,, where O, is the maximal order of k,, (1=i=g). For any
ideal a of Oy, 9,(0Q.Z,)=a,P---Da,, where a,=C,(a)0,, (1=s=9).
We shall use the following results.

(1) R=N,RR:Z,)Nk, j=MN,(R:Z,) Nk where p is any prime
number. Moreover RRQ),Z, (resp. 1Q.Z,) is O, (resp. RQ,Z,) except
Jor finitely many prime numbers p. :

(2) Conversely, take an order R, of k, for each p such that
R,=0, except for finitely many prime numbers p; denote by {R,},
the collection of them. Then an order R=N,R,Nk of k is uniquely
determined by {R,}, and RR.Z, s equal to R, for each p.

(2) Take an ideal j, of R,=RQ.Z, for each p such that j,=
R, except for finitely many prime numbers p; denote by {j,}, the
collection of them. Then an ideal j=,j,Nk of R is uniquely de-
termined by {j,}, and 7@R:Z, is equal to j, for each p.

DerFINITION. Let R, be an order of %k,, j, an ideal of R,. We
denote by f, the set of elements ¢, €k, such that £§,0,CR, and call
it the conductor of R,. We call j, R,-proper if O0,(4,)={&, € k|&,5,Z 7.}
is equal to R,, R,-regular if «,5,CR,, (@,7,, f,)=R, for some a, ek}
(ky is the set of unity of k,). '

(8) Let f be the conductor of R, namely f={&ek|é0,CR}. Then
JRzZ, is the conductor of R,=RR.Z,.

(4) O0()Rz2Z,=0,(iR:Z,).

(8) J is R-proper if and only if jQR.Z, is RQZ,proper for
any prime number p.

(6) Let R, be an order of k,, f, the conductor of R,. Then,
Jor any ideal j, of R, such that (J,, f»)=R,, 7,0, ts an ideal of O,
such that (5,0, f)=0, and (3,0,)NR,=7,. Conversely, for any
ideal a, of O, such that (a,, f,)=0,, a,NR, is an ideal of R, such
that (a,NR,, f,)=R, and (a,NR,)0,=a,.*

(7) Let R, be an order of k, with the conductor f,, j, an ideal
of R,. Then, if j, s prime to f,, namely (7,, f,)=R,, j, is principal
n R,.

Proor. By (6), we have an ideal a, of O, such that it is prime

(%) 4, and a, here are regular in usual sense.



July 1977 On Non-Maximal Orders of Algebraic Number Fields 3

to f, and j,=a,NR,. Therefore we have the following isomorphism
via @,, permutating indices if necessary;

So=phP- .. @pireoprﬂ@ oo @O»g
a,= Ovl@ ce @Op,®‘pﬁl—’lﬂ@ - PPy

where 0<r=<g and l,, m; are non-negative integers (1<i<r, r+1<
J=g9). Let w, be a prime element of p, (1<i<g). Then we have
an element ¢, of f, such that

@?(¢P):(ﬂ]l.l, cty nyl-r, 1—77,';7_1_7'1"'1’ s, 1__72";”'g>

If we define a, by a,=1—¢,, we have a,€R,, a,=a,0, and (@R, fo)=
R,. Then, by (6) we have

jpz (jpop) N Rp: (a’:oop) N Rp: (apRPOp) N Rp: a’:oR:n .

According to (7), we have obviously the following proposition.

PROPOSITION 1. Let R, be an order of k, j, an ideal of R,.
Then, j, is Ryregular if and only if it is principal in R,.

(8) APPROXIMATION THEOREM. Let p,, -+, p, be finitely many
distinct prime numbers, a,, a unit of k,, R, an order of k, (1=i=<7r).
Then, there exists an element «e€k* such that (a@l)a,, is a unit of
R,, AZi=Z7r) and a@®l €O, for p different from p, ---, p,.

PROPOSITION 2. Let R be an order of k, j an ideal of R, R,=
R®Q:Z,, j,=7QR:Z,. Then, j 18 R-regular if and only if j, is R,-
regular for all prime numbers p.

Proor. Clearly we have only to verify the sufficiency. We
denote by P the set {p|p is a prime number such that j,#0, or
J»#0,}. Then P is a finite set. By the assumption, for any prime
number p, we have an element a,ck; such that «,7,CR, and
(@p7 5 Jo)=R,, where f is the conductor of R and f,=f&,Z,. Then,
by (8), we have an element ack* such that (a®l)e," is a unit of
R, for pe P and a®Qle€O, for p¢ P. Namely,

(a@l)jF{M’”CR”’ if peP.
. (@®1)0,c0,=R,, if pe¢P
Therefore by (1), we have @jCR and

(@pdp fo)=R,, if peP

(@, D= @@y £)={ 0 R pep
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where (aj, f),=(aj, /)QzZ,. Then by (2') we have (aj, f)=R and
this proposition is proved.

From Proposition 1 and 2, we have clearly the following theorem.

THEOREM 1. Let R be an order of k, j an ideal of R, sz.

RQ:Z, and j,=iR:Z, for any prime number p. Then the follow-
ng conditions are equivalent.

(1) jJ is R-regular.
(2) g, ts Ryregular for all p.
(38) J, s principal in R, for all p.

§2. Case of a quadratic number field

Let j, be a Z,-submodule of O, such that (O,: j,)<<e. Then
0.(7,) =16, €k,|,3,2J,} is an order of k, and j, is a fractional ideal
of it. In this section, we assume that k& is a quadratic number
field, and we are going to consider whether 7, is principal in
0,(J5)- ,

Let & be Q(v/m) where m is a square free integer. Then O,=
Z,DwZ, where @ is V'm if m=2,3 (mod. 4) or p+#2, (1+V'm)/2
if m=1 (mod. 4) and p=2. Then, for any prime number p, we
have

kp: Qp@“)Qp
0,=Z,PowZ,
Jp=D0"Z DN+ p"0)Z,

where [, are non-negative integers (¢=1, 2) and neZ,. Now, since
0,(6,7,)=0,(4,) for any element &,€k¥, we can assume one of the
following three conditions; (1) 1,=0, (2) [,=0, (8) » is a unit of Z,.
Then it is easy to see the following proposition holds.

PROPOSITION 3. Notations being as above, j, is expressed as
follows.

(I) If m=2,3 (mod. 4) or p+#2, we have

0,(75) | if 1,=0
. @ N @)0,5,)  if 1,>0, 1,=0, =1,
T v+©)0,(4,) if 1,>0, 1,=0, l,=1,

(M p"@)0,(7,) if 1,>0, 1,>0, N is a unit of Z,

where p' is the highest power of » which divides m—\.
(II) If m=1 (mod. 4) and p=2, we have
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Oz(jz) 7/f l1='0
@A @)0,3y)  iF 1>0, L,=0, L=l
v+ 0)04(3y) if 1,>0, 1,=0, l,=1,

M+ 220)04(4,) of 1,>0, 1,>0, \ is @ unit of Z,
where 2 is the highest power of 2 which divides (m—1)/4—N(N+1).

PrRooF. This proposition is immediately proved, since O,(j,) has
the following form.

(I) If m=2,3 (mod. 4) or p=+-2,

7. if 1,=0
o\ z@prez, if 1,>0, 1,=0, 1<,
0,(4»)= .
0, if 1,>0, 1,=0, [,=1,

Z,®p"wZz, if 1,>0, 1,>0, A is a unit of Z,
(II) If m=1 (mod. 4) and p=2,

‘7'2 if l1=0
iy | EBETE, i 1,50, 1=0, L,<L
=0, it 1,>0, 1,=0, I,=1,

Z,Pp2htewz, if 1,>0, 1,>0, \ is a unit of Z,

Thus, from this proposition and Theorem 1, we have the follow-
ing theorem. ‘ '

THEOEM 2. Let k be a quadratic number field, R an order of
k, 7 an ideal of R. Then, j ts R-proper if and only +f it is R-
regular. '

§3. Case of an algebraic number field of dégfee
n greater than 3 over Q

In this section, we shall give an ‘example of an ideal which is R-
proper and not R-regular in case n=3. '

Let k=Q(f) be an algebraic number field of degree n greater
than 3 over @. We may assume that ¢ is an algebraic integer.
Let f(X)=X"+a,X"'+---+4a, be the irreducible polynomial that
has @ as a root, a, being a rational integer (1=<i<n).

PROPOSITION 4. Notations being as above, let p be a prime
number relatively prime to the discriminant of k and let p' be the
highest power of p which divides wa,. We consider the following
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order R of k and the ideal j of R.

R=  ZOp"0ZP---Bp "%
j — pl-l-sz@pmeZ@ coe @pman—lz

where m 1s an integer greater than 2. Then j is R-proper, but not
R-regular.

ProOOF. We can verify by calculation that 7 is R-proper. In
order to prove the second assertion, put R’ an order of %k defined by

R'=ZOp" 0 ZDp"0°ZBH- - - Dp"0"Z .

Then we have O,(j,R;)2R;, where j,=7&:Z, and R,=R'®.Z,. On
the other hand, it follows from Theorem 1; if j is R-regular, j, is
principal in R,, hence j R, is principal in R;,. This contradicts the
fact 0,(j,R;)=2R,.

§4. Case of an algebraic number field of degree 3 over @

For k of degree 3 over @, we can prove by straightforward
calculation the following;

PROPOSITION 5. Let j, be a Z,-submodule of O, of rank 3. If
the decomposition of the ideal (p) into prime ideals in k is (p)=
P, 07 (Pp)=pp, where p,#=p; (1+#7), either (1) or (2) occurs;

1) 4, s principal in 0,(7,),

(2) 0,(4,) <0735

This proposition means that in these cases j, is invertible in
0,(j,) (i.e. there exists a Z,module j, such that j,5,=0,(7,)) if and
only if j, is principal in O,(j,). However we could not prove that
this holds in general. This is an open question left to us.

References

[1] T. Takagi, Daisiiteki Seisfiron, Iwanami, 1948.
{21 M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math.,
195 (1955), 127-151.



