Natural Science Report, Ochanomizu University, Vol. 28, No. 1, 1977 7
BHROKELTFRE BARIERE FWVEFEL S

Convergence of Monotone Operators

Hisako Watanabe

Department of Mathematics, Faculty of Science,
Ochanomizu University, Tokyo

(Received April 8, 1977)

§1. Introduction

Let C(X) be the Banach space of all continuous real-valued
functions on a compact Hausdorff space X. Theorems of Korovkin
type give sufficient conditions for a sequence (L,) of positive or con-
tractive operators on C(X), or more generally, on a Banach space
E to converge strongly to the identity operator whenever (L,g)
converges to g for every g belonging to a certain subset C of E.

H. Bauer has considered the convergence of a net of monotone
maps of an adapted space in C(X) into R* (the ordered vector space
of all real-valued functions on X) for a locally compact Hausdorff
space X ([2], [3D.

There arises naturally the problem to replace the identity by
certain positive operators (cf. [4], [5], [6], [T]).

We consider the convergence of a net (L;) of monotone maps of
an ordered vector space F into RY for a set Y. More precisely, let
C be a convex cone in an ordered vector space E and A a monotone
sublinear map of C into RY. We research for sufficient conditions
for (L,f) to converge pointwise to a certain L f € R* for f € E whenever
Tim, L,g<Ag for every geC, or whenever lim; L,g=Ag for every
g belonging to a linear subspace F' of E. Further, in case Y is a
locally compact Hausdorff space, the analogous problems with respect
to the locally uniform convergence or the order convergence instead
of the pointwise convergence are considered. Moreover we apply
these results to the problems with respect to regular points in potential
theory, to a concept of an integral, a generalization of the Riemann-
Stieltjes integral, and to the positive linear map A given in [5].

§ 2. Thé A(C)-bdundary and A(C)-affine elements

Let E be an ordered vector space and C a convex cone in K.
Suppose that E is C*-bounded. Here E is called C*-bounded when
for each f € E there is g€ C such that ¢=0 and —g=f<g. Let Y
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be a set and A a map of C into R¥*. A map A is called monotone
on Cif f,geC and f < g imply Af < Ag. A map A is called sub-
linear (resp. subadditive) on C if the following conditions (i) and (ii)
(resp. (i)) are satisfied:

(i) C»af, g implies A(f+g)=Af+Ag,

(ii) Cof,neR" implies ANSf)=NAS.

In this section we suppose that A is a monotone sublinear map
of C into R*. For feFE and yc Y, put

Af(g)=inf {Ag(y): g = f, geC},

then — oo <Af(y)< oo since E is C*-bounded and A is sublinear. The
map Af of E into RY is monotone and sublinear. We denote, for
each yeY, by I, the set of all positive linear functionals ¢ on K
satisfying

1(9)=Ag(y)
for each geC.

LEMMA 2.1. For every feFE and yeY,

(2.1) | Af(y)=max {p(f): e M},
and
(2.2) —A(—f)=min {p(f): peM,} .

ProOF. The functional: A+ Ah(y) is sublinear on E, there is, by
the Hahn-Banach extension theorem, a linear functional ¢ on E satis-
fying

wH=Af(y)

and
w(h)<Ah(y) for all heE

If h<0, then pu(h)<Ah(y)<A0)y)=0. Hence z is positive. Since
p@)<Ag(y)=Ag(y) for every geC, we have peM, Further, if
ve,, then

v(f)<{inf ¥(g): g=/, g € C}=inf {Ag(y): g=7, g € C}=AF(y)=p(f) .

Thus we have the relation (2.1). Further, replacing f by —f in
(2.1), we have

—A(—F)(y)= —max {#(— f): £ € M, }=min {£(f): e M,} .
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An element f € E is called A(C)-affine if Af=—A(~—f) on Y.

PROPOSITION 2.1. An element fe E 1s A(C)-affine if and only if
the functional: p— p(f) is constant on M, for each yeY.

PrROOF. From Lemma 2.1 it follows that Af= —A(—f) on Y if
and only if for each ye Y and each peM,, #(f)=Af(y). Hence we
have the conclusion.

We denote 6(A(C)) the set of all y € Y for which I, consists of
one element and call it the A(C)-boundary. Immediately we have
the following proposition and the corollary by Lemma 2.1.

_PROPOSITION 2.2. A point y of Y belongs to 6(A(C)) if and only
of Af(y)=—A(—Ff)(y) for every [ e E.

COROLLARY 2.1. 0(AC)=Y f and only +f every element f of
E is AC)-affine.

ExAMPLE 1. Let X be a compact Hausdorff space and C a convex
cone in C(X) containing constant functions and separating the points
of X. Put E=C(X) and Y=X. Then, it is obvious that the I(C)-
boundary with respect to the identity map I on E is equal to the
Choquet boundary of X with respect to C.

ExAMPLE 2. (cf. [6]) Let X and Y be compact Hausdorff spaces.
Assume that X has at least n+1 points and F' is a linear subspace
of C(X) satisfying the following assumption: given any n distincts’
points of X, there exists g € F' such that g(x) = 0 and g(x)=0 exactly
when z=x, for 1=1, ---, n. Denote by A a positive linear map of
C(X) into C(Y) of the form

(2:3) (A9W)=3 +W9(PW) (geCX),yeY),

where +, € C*(Y) and ¢, is a continuous map of Y into X for i=1,
«++,n. Then we have

PROPOSITION 2.3. 6(A(F))=Y.

PrROOF. For any y€Y and any pe, we show that p=e,-4A
where ¢, is the evaluation functional at y. Put ¢, (y)=2,(t=1, «--, n).
By the assumption there exists g € F' satisfying g¢(x,)=00¢=1, -+, n)
and g(x) > 0 elsewhere. Since u(g)=Ag(y)=0, the support of the
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positive measure p is contained in the set {z, ---, %,}, and accordingly
¢ is represented by the form Zaew with some «;=0. For each 7,

there is g, € F satisfying g,(z;)= O(y #1) and g,(x)>0 elsewhere. Then
tg) =09 x;). On the other hand (g,)=Ag(y)= ¥(¥)g.®y). Since

9.x;,)>0, it follows that a,=+,(y). Thus we have p= Zm(y)% -

and accordingly p=e¢,-A. Since v is an arbitrary pomt we have
the conclusion.

§3. The locally uniform convergence

We consider the case where Y is a locally compact Hausdorff
space. Let E be an ordered vector space and C a convex cone in
E such that E is C*-bounded. Suppose that A is a sublinear map
of C into C(Y). For a net (L,);.; of monotone maps of E into RY,
we write

U-limL,g < h (resp. U~limL,g=h) on S,
if for any ¢ > 0 there is an index ¢,¢ I such that
L.g(y)<h(y)+e (resp. L.g(y)>h(y)—¢)

for all 2=%,and all y € S. We remark that a net (L,9) in R* converges
uniformly on S to & if and only if the following two inequalities

U—Iim Lyg<h on S and U—lim L,g=h on S

hold.
We have the following Korovkin-type theorem.

THEOREM 3.1. Let (L,) be a net of monotone subadditive maps of
E into RY such that L,(0)=0 and let S be a compact subset of Y. If

(3.1) U—TlimLg<Ag on S

for every geC, then net (L.f) converges uniformly on S to Af for
each f e K satisfying Af=—A(—f) on S.

Proor. Since Af(y)= inf {Ag(y): g = f, gcC}, there exists, for
any ¢>0, g;eC(j=1, «--, n) such that g,=f and

Af(y)+e> min{Ag,(y), +++, Ag,(y)} for all yeS.

From (8.1) it follows that for any >0 there ex1sts an index 1, such
that

Lgy)<Ag;,(y)+e (3=1, +++, m)
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for all y €S and all index 71=1,.

Hence
Lf @) < min {Lg,@), - -+, Liga(@)} < min {Ag,v), -+, Ag, @)+
<Af(y)+2e.
This implies
(3.2) U- T Lf()<AF@w) on S.
Since (3.2) also holds for —f and L,(—f)=—L,f, we have
(3.3) U-lim L,f(y)= —A(—F) on S.

If Af=—A(—f)(y) on 8, (L.f) converges unifomly on S to Af.

COROLLARY 8.1. If (8.1) holds on Y for every geC, then the
net (L,f) converges locally uniformly on Y to Af for every A(C)-
affine element.

PrOOF. The corollary follows immediately from the theorem and
the definition of A(C)-affine elements.

COROLLARY 3.2. Let S be compact subset of o0(A(C)). If (3.1)
holds on S for every g€ C, then, for every f e E (L.f) converges uni-
formly on S to Af=—A(—f).

Proor. Since Scd(A(C)), we have Af=—A(—f) on S for all
f e E by Proposition 2.2 and hence we have the conclusion.

REMARK 3.1. In particular, assume that 4 is a monotone sublinear
map on E. Since —A(—f)SAf=<AY, it can be concluded in Corollary
8.1 (resp. Corollary 3.2) that (L.f) converges locally uniformly on
Y(resp. unifomly on S) to Af.

Next, let F' be a linear subspace of E such that E is F'*-bounded
and A be a monotone map of F into R*. For feFE and yeY, put

Af(y)= inf {Ag(y): 9=f, g€ F},
and

Af(y)=sup{Ah(y): h=f, he F} .
Then —co <Af(W)SAF(Y)<oo.

Suppose that (L,) is a net of monotone maps of E into R*. Then
we have the following theorem and corollaries.
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THEOREM 3.2. Let A be a monotone map of F into C(Y) and S
a compact subset of Y. If (L,g9) converges uniformly on S to Ag,
then (L.f) converges uniformly on S to Af for every f ¢ E satisfying
Af=Af on S.

Proor. It has been shown in the proof of Theorem 3.1 that
Af(y)=inf {Ag(y): 9= f, g€ F)
implies that (3.2) holds on S. Similarly,
Af(g)=sup {Ah(y): h<f, h e F}
implies that
U—lim L,f(y) = Af (y)

holds on S. If -AT:A__f on S, then (L,f) converges uniformly on S
to Af.

COROLLARY 3.3. Let A be a monotone subadditive map of F
into C(Y) satisfying A(0)=0. If (L.,g) converges locally uniformly
on Y to Ag, then (L.f) converges locally uniformly on Y to Af fo'r
all A(F)-affine element f.

PrOOF. From the asssumption follows Af=—A(—f) and hence
Af=Af on Y for an A(F)-affine element f. By the theorem we
have the conclusion. '

COROLLARY 3.4. Let A be a positive linear map of F into C(Y)
and S a compact subset of 0(A(F')). If (L,g) converges uniformly
on S to Ag for all ge F, then (L.,f) converges uniformly on S to
Af for all feE.

PrROOF. Since Af=-—A(—f)=Af on S by Proposition 3.2, we
have the conclusion by the theorem.

Using Proposition 2.3, Corollary 3.4 and Remark 3.1, we have
immediately the following theorem which has the weaker assumption
than Theorem 2 in [5].

THEOREM 3.3. Let A be the positive linear map of E into C(Y)
given in Example 2 and let (L,g) be a net of monotone maps of E
wnto RY. If (L,g9) converges uniformly on Y to Ag for all geF,
then (L.f) converges untformly on Y to Af for all feE.

Let F be a linear subspace of E such that E is F'*-bounded and
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A Dbe a positive linear map of F into C(Y). We denote by S, (F, A)
the set of all f€ E having the following property: for every net
(L,);e; of monotone maps of E into R* for which (L,g) converges
locally uniformly on Y to Ag for all g € F', (L,f) also converges locally
uniformly to a certain Lf €C(Y) independently of (L,).

The set S,(F, A) is characterized in the following theorem (cf.
[2, Theorem 3.3]).

THEOREM 3.4. The set S, (F, A) is equal to the set of all A(F)-
affine elements.

Proor. If f is A(F)-affine, it follows from Corollary 3.3 that
feS.,(F, A). Conversely, suppose that feS,(, A). By Proposition
2.1 it suffices to prove that for every ze Y, pr—u(f) is constant on
- IN,. Let ¢ be an arbitrary functional in 9,. Choose a base <& of
neighborhoods of z consisting of relatively compact open sets. Then
for each Ve <# there is ¢q,cC(Y) satifying 0=¢,<1, ¢»(?)=1 and
g-(¥)=0 for all yc V°. Define

Lyh=t(h)qy +M(1 —qy)

for each he E. Then (L,) is a net of monotone maps of E into R¥
and satisfies

| Lyg—Ag|=|Ag(z)—Ag|gv

for all ge F. Consequently, (L,g) converges locally uniformly on Y
to Ag. Since S, (F, A)3 f, (Lyf) also converges locally uniformly on
Y to LfeR*. In particular (L,f(2)) converges to Lf(z) and hence
p(f)=Lf(z). Thus it is concluded that f is A(F')-affine.

Let F(G) be the linear subspace of E generated by a subset G
of E. If S,(F(G), A)=FE, G is called an A-Korovkin set.

COROLLARY 3.5. Let G a subset of Y such that E is GT-bounded.
The set G is an A-Korovkin set if and only if Y=0(A(F(®))).

ProoF. This is an immediate consequence of Theorem 3.4 and
Corollary 2.1.

§4. The pointwise convergence

Let Y be a subset and C be a convex cone in an ordered vector
space E such that E is C*-bounded. Assume that A is a monotone
sublinear map of C into R* and (L,),.; is a net of monotone maps
of E into R*. We assign the discrete topology to Y, Y is a locally
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compact Hausdorff space. Since a set consisting of one point is
compact, the following theorem is obtained by Theorem 3.1

THEOREM 4.1. Let (L,) be a net of monotone subadditive maps
of E into R* satisfying L,(0)=0. Suppose that S is a subset of Y.
If

Iim Lg(y) < Ag(y)

Jor every geC and every y €S, then (L.f) converges pointwise on
S to Af for every fcE satisfying Af=—A(—f) on S. '

ExamMPLE 3. We consider a relatively compact open set U in a
strong harmonic space in the sense of H. Bauer ([1, p. 61]). Let E
be the orderd vector space C(OU) of all continuous real-valued funec-
tions on the topological boundary oU and C be the convex cone of
all continuous functions on oU which are extended to be continuous
on U and superharmonic in U. Consider the case where Y is the
set {z} consisting of one point z2€0U and A is the positive linear
functional on E corresponding feFE to f(z). Then, we obtain the
following proposition.

ProrosiTION 4.1. (cf. [1, Satz 4.4.1]) If a point zeoU belongs
to the A(C)-boundary, it is a regular point of U.

Proor. First we remark that we use the notations and ter-
minologies in [1]. Let (z,) be an arbitrary sequence of U converging
to z. Put, for every feE, L,f=H/z,). Then L, is a monotone
sublinear functional on E. Since every geC is extended to the
continuons function k, on U which is superharmonic in U, it follows
that

(4.1) lim L,g=10im H,(z,)<lim h,(z,)=g(z)=Ag .

Since all f e E are A(C)-affine by the assumption and Corollary 2.1,
we have, using Theorem 4.1 and (4.1),

lim H(z,)=f(z) for allf e C(3U) .

Thus z is a regular point of U.

REMARK 4.1. It is obvious that a point z€oU belongs to the
A(C)-boundary if and only if z is extreme-regular ([1, p. 142]).

REMARK 4.2. When F'is a linear subspace of K, it is obvious
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that the results with respect to the pointwise convergence of the type
of Theorem 3.2, Corollary 3.3 and Corollary 3.4 are also obtained.

EXAMPLE 4. Let % be a field of subsets of X and g a finitely
additive positive set function defined on . Define

F.—_{g s Uie®, a,e R, me N} ,

where y,, is the characteristic function of U,. If B(X) is the ordered
vector space of all bounded real-valued functions on X, the space
F' is a linear subspace of B(X) containing constant functions. Con-

sequently B(X) is F'*-bounded. For every gzi“ a)y, € F, define

Ag=3 ap(U) .

Then the functional A is well-defined and positive linear on F. By
Proposition 2.1 a function fe€ B(X) is A(F')-affine with respect to
this map A if and only if the function: g+ @(f) is constant for any
extension @ of the positive linear functional ¢ on F' to a positive
linear functional on B(X). Consequently the space I(X) of all A(F')-
affine functions is a linear subspace of B(X). Define

u(f)=Af=Af for each fel(X),

then ¢ is a positive linear functional on I(X).
We consider a partition 4 of X:

(4.2) X=UZX, X.NX;=¢G#5), X.e¥.

If a partition 4, is a refinement of 4,, we write 4,<4,. The family
of partitions of X is directed by this order relation. For a partition
4 given by (4.2) and f € B(X), define

M.f = 33 ((sup £(a) )X
and
maf = 3, (inf f@)uX)) .

Then (M,) and (m,) are monotone functionals on B(X). For every
geF

lim Myg=Ag=(g)
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and
lim m.g=Ag=p(g) .
Consequently, by Remark 4.2,
lign M,f=Af=p(f) for all felI(X)

and

lim m,f =AF =p(f) for all feIX).

Conversely, suppose that lim M,f and lim m,f and lim m .f both exist
4 4 .
and the one is equal to the other. Put

Then, given every &>0, there is a partition 4, such that for all
partitions 4=4,
k—e<m,fEM,f <k+e.

Assume that the partition 4 is given by (4.2) and put

Z &) x, and g,= iz:iBiXXi ’

i=1

where «, —sup f(x) and B, -1nf f (). Then g,=f and f=g,, and both
g, and g, belong to F. Consequently,

M,f=Ag,=Af=Af=Ag,=m,f .
This implies
k+e>AfzAf>k—e¢,
whence Af=Af. Therefore, we have

PROPOSITION 4.2. A function f € B(X) s A(F)-affine if and only
of lim Myf is equal to lim myf for the met (M,) and (m,).
4 4

This integral is a generalization ot the Riemann-Stieltjes integral.

§5. The order convergence

Let Y be a locally compact Hausdorff space and B an adapted
space in C(Y). For a closed subset S of Y, the vector space By(S)
of all B"-bounded continuous functions on S is also an adapted space
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and a sub-vector lattice of RS. Therefore, according to Bauer, we
can consider the order topology on B,(S) ([3, §1]). This topology, by
definition, is the finest locally convex topology on B,(S) for which
every order interval in B,(S)

{feByS): —g=S=g on 8} (geBy(S), 9=0)

is bounded.

Let E=E(B*) be the set of all functions ¢ of B* into (0, + «].
For every ec E we denote by V.(S) the set of all B*-bounded con-
tinuous functions f on S with following property: there exist finitely
many functions A, ---, h,€ B* and corresponding numbers », ---,

A, € BT with sum ixizl such that

Tt
F1 S S nehdh, on S,

Then, Corollary 1.2 and Lemma 1.4 in [3], the family (V.(S))..r is
a fundamental system of convex and symmetric neighborhoods of
the constant function 0 on S with respect to the order topology on
By(S). When a net in B,(S) converges to he B,(S) in the order
topology on B,(S), it is said to be order convergent on S to h.

The following lemma by Bauer is an extension of Dini’s theorem
to the locally compact case.

LEMMA 5.1. ([3, Lemma 2.1]) Let (g,);.; be a decreasing net in
By(S) which satisfies

i'nlf 9.y)=0 for all yeS-
Then the met (¢,);e; ©s order convergent on S to 0.

We remark that if a net B,(S) is order convergent on S, it
converges locally uniformly on S.

Let F be a linear subspace of an ordered vector space E such
that E is F*-bounded and let Y be a locally compact Hausdorff space.
Assume that the image of a positive linear map A of F into C(Y)
is an adapted space in C(Y). Then the following Korovkin-type
theorem for the order topology is a generalization of Theorem 3.1
in [3].

THEOREM 5.1. Let S be a closed subset of Y and (L,);c; @ net
of monotone maps of K into R*. If (L.9);.;r ©8 order convergent on
S to Ag for every ge F, then (L,f);c; is order convergent on S to
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Af for every feE satisfying Af = Af on 8.
PROOF. Assume that fecE satisfies Af=Af on S. Then the
restriction Af|S of Af to S is continuous on S. Put
={(inf (Ah,, -+, Ah,)—Af)|S:neN, h,e F, b, 2 f}.

Then &f is a decreasing net in By(S) and satisfies inf {g(y): g € & 5}=
0 for every y€S. By Lemma 5.1 there exist, for any cc E, h;, «--,
h, € F such that

k;=f, G=inf (AR}, ---, AR )=Af, and g|S—Af|SeV.sS)
Similarly, there exist, for any ¢e E, h!', -+, hi, € F' such that
hi=f, g=sup (4h,, +++, Ahn)SASf and Af[S—g|Se V.4(S).

Since L, is monotone,

n

L.,f—9< inf L;h;— inf Ah;< Z | L.h;— AR} | .

1270 12550 j=1
Similarly,
g—L,f=sup Ah} —sup L;h; < ﬁ |Ah} — Ly | .
1S5Em 1S5sm i=1
Hence

(5.1) | Lf~AF| < 3| Lbj—ARj| + 3 [ALY — Ly | +|5—AF| +5—g -

Since for each j (L.h));. (resp. (L;h});..) is order convergent on S to
Ahl(resp. ARY), there exists an index 4, such that for every i=1,

Lh;—Ah; e V. u(S) (1=1, .-+, n)
and
Lzh;’—Ah’;' € Ve/4m(S) (.7:1, *t m) .

Hence, from (5.1) it follows that L,f —Af € V.(S). Thus it is concluded
that (L.f) is order convergent on S to Af. '

REMARK 5.1. It is obvious that the results with respect to the
order convergence of the types of Corollary 3.3 and 3.4 are also
obtained by Theorem 5.1.

Finally, we denote by S,(F, A) the set of all fe€ FE having the
following property: for every net (L,9);.; of monotone maps of E
into R* for which (L,9) is order convergent to Ag for all g€ F, (L.f)
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is order convergent to a certain Ljf e B,(Y) independently of (L,).
Corresponding to Theorem 3.4 we obtain the following theorem (cf.
[8, Theorem 3.4}).

THEOREM 5.2. The set S,(F, A) is equal to the set of all A(F)-
affine elements.

Proor. From Theorem 5.1 it follows that the set S,(F, 4) con-
tains all A(F')-affine elements. Conversely, suppose that f e S,(F, A)
and z€ Y. It suffices to prove that g+ u(f) is constant on IR,. For
each pe,, we consider the net (Ly)y., of monotone maps of E
into R* used in the proof of Theorem 3.4. For given Ve .<Z there
is hy € B* satisfying ¢,<h, since ¢, has a compact support. For any
ee E and for any ge F,

|Lyg—Ag|=]Ag(z)—Ag|qw=e(hy)hy

holds for all sufficiently small W V. Thus (L,g) is order convergent
to Ag for all ge B. Since feS,(F, A), (L,f) is also order convergent
to Lf. In particular p#(f)=Lf(z). From Proposition 2.1 it follows
that f is A(F)-affine.
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