A Condition for a Compact Kaehlerian Space to be Locally Symmetric

Yosuke Ogawa

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received April 10, 1977)

1. Let M be a Riemannian space of class C^{∞} and $R = (R_{ijkl})$ be the Riemannian curvature tensor on M. If M is locally symmetric, then it satisfies

$$(*) R(X, Y).R=0$$

for any tangent vectors X and Y. Conversely, it has been studied by several authors under what additional conditions (*) implies local symmetricity. There was given by H. Takagi an example of a complete irreducible, 3-dimensional Riemannian space which satisfies (*) and is not locally symmetric.

In this note we show the following

THEOREM A. If a compact Kählerian space of constant scalar curvature satisfies the condition (*), then the space is locally symmetric.

2. Let M be a Kählerian space with complex structure tensor $\varphi = (\varphi_i^j)$. We denote by $R_1 = (R_{ij})$ and R' the Ricci tensor and the scalar curvature. It is well known that the following formulas are satisfied:

$$\varphi_a^r R_{rbcd} = \varphi_b^r R_{racd},$$

$$\varphi_a^r R_{rb} = -\frac{1}{2} \varphi^{rs} R_{rsab} ,$$

It is also known that the 2-form $S=(1/2)S_{ij}dx^i \wedge dx^j$ defined by $S_{ij}=\varphi_i^r R_{rj}$ is closed. Denoting the covariant derivative and the codifferential operator by ∇_i and δ , we have

$$\begin{split} (\delta S)_a &= -\nabla^r (\varphi^s_r R_{sa}) \\ &= \varphi^s_a \nabla^r R_{rs} = \frac{1}{2} \varphi^s_a \nabla_s R' \ , \end{split}$$

and hence the 2-form S is coclosed if and only if the scalar curvature R' is constant.

A. Lichnerowicz has obtained the following integral formula which is valid in a compact orientable Riemannian space M:

$$\begin{split} 2 \int_{\mathcal{M}} [(\nabla^{c}R^{bd} - \nabla^{d}R^{bc})(\nabla_{c}R_{bd} - \nabla_{d}R_{bc}) - K] \eta \\ = & \int_{\mathcal{M}} (\nabla^{r}R^{abcd}\nabla_{r}R_{abcd}) \eta \ , \end{split}$$

where η means the volume element of M and

$$K = R^{abcd}H^r_{bcd,ra}$$
 , $H_{abcd,ij} =
abla_i
abla_j R_{abcd} -
abla_j
abla_i .$

The condition (*) is equivalent to $H_{abcd,ij} = 0$.

3. Proof of Theorem A. Assume that the Kählerian space M is compact and the scalar curvature R' is constant. Then we have $\Delta S = 0$, where $\Delta = d\delta + \delta d$ is the Laplacian operator. Hence

$$0\!=\!(\Delta S)_{ab}\!=\!-\varphi_a^r(\nabla^s\nabla_sR_{rb}\!-\!R_r^sR_{sb}\!-\!R_b^sR_{rs})\!+\!R_{ba}{}^{rs}\varphi_r^tR_{ts}$$

is valid, from which we have

$$abla^s
abla_s R_{ab} = 2 R_a^s R_{sb} - arphi_a^u R_{ub}^{\ \ rs} arphi_r^t R_{ts}$$
 .

Using the Bianchi's identity and (1), (2) the second term of the right hand side becomes

$$\begin{split} -\varphi_a^u R_{ub}{}^{rs}\varphi_r^t R_{ts} &= \varphi_a^u R_{ursb}\varphi^{rt} R_t^s + \varphi_a^u R_{usbr}\varphi^{rt} R_t^s \\ &= R_{tasb} R^{ts} + \varphi_t^u R_{uabr} (-\varphi^{st} R_t^r) \\ &= 2 R_{arbs} R^{rs} \ . \end{split}$$

Hence we have

$$(4)$$
 $\nabla^{s}\nabla_{s}R_{ab} = 2(R_{a}^{s}R_{sb} + R_{arbs}R^{rs})$.

Let us assume that the condition

$$(**) R(X, Y) \cdot R_1 = 0$$

holds good for tangent vectors X and Y. Since (**) implies that

$$R_{abi}{}^{r}R_{rj} + R_{abj}{}^{r}R_{ri} = 0$$
 ,

we have

$$R_{arbs}R^{rs}\!=\!-R_{ar}{}^{rs}R_{bs}\!=\!-R_{as}R_{b}^{s}$$
 .

Therefore $\nabla^r \nabla_r R_{ab} = 0$ is obtained from (4), and we get

$$\begin{split} \nabla_a R_{bc} \nabla^a R^{bc} &= \nabla_a (R_{bc} \nabla^a R^{bc}) - \nabla^a \nabla_a R_{bc} R^{bc} \\ &= \nabla_a (R_{bc} \nabla^a R^{bc}) \ . \end{split}$$

Integrating this equation on M, we have

$$\int_{\scriptscriptstyle M} \! (
abla_a R_{bc}
abla^a R^{bc}) \eta \! = \! 0$$
 ,

from which $\nabla_a R_{bc} = 0$ follows. Thus we proved the following

THEOREM B. If a compact Kählerian space of constant scalar curvature satisfies the condition (**), then the Ricci tensor is parallel.

If the condition (*) is satisfied, then it is clear that (**) is valid and K in the previous section vanishes, since $H_{abcd,ij}=0$. Making use of the integral formula of A. Lichnerowicz, it is shown that the curvature tensor is parallel. This proves Theorem A.

References

- [1] A. Lichnerowicz: Géométrie des groupes de transformations, Dunod, Paris, 1958.
- [2] K. Yano: Differential geometry on complex and almost complex spaces, Pergamon, New York, 1965.
- [3] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., **20** (1968) 46-59.
- [4] K. Sekigawa: On complex hypersurfaces of spaces of constant holomorphic sectional curvature satisfying a certain condition on the curvature tensor, Sci. Rep. Niigata Univ., 6 (1968) 51-57.
- [5] H. Takagi: An example of Riemannian manifolds satisfying R(X, Y).R=0 but not $\nabla R=0$, Tôhoku Math. J., 24 (1972) 105-108.