On Proper Spaces of Some Positive Operators with the Property (W)

Fukiko Takeo

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received September 8, 1976)

1. Introduction

It is well known as a part of results by O. Perron and G. Frobenius that a non-negative matrix T is irreducible if and only if each one of the proper spaces of T and T', corresponding to the spectral radius r(T), is a one-dimensional subspace spanned by a positive element [1]. This property has been extended to infinite-dimensional topological ordered vector spaces by many authors [2, 3, 5, 6, 8]. Among them, I. Sawashima gave the extension to the case of an operator T in a partially ordered Banach space, whose resolvent has the point $\lambda = r(T)$ as its pole [5]. Further, H. H. Schaefer has extended this property to an ergodic operator in a Banach lattice [8]. In this paper, the author investigates an extension of these results to the more general operators in a partially ordered Banach space, which are not necessarily ergodic. We examine operators with the property (W) in a general Banach space in Section 2 and give a result about irreducibility in Section 3 (Th. 1). Section 4 is devoted to an investigation of the property that the proper spaces of T and T', corresponding to r(T), are one-dimensional (Th. 2 & 3). Theorem 2 is also a generalization of the results by H. H. Schaefer that if T is a Markov operator in C(X) such that the proper space of T', corresponding to 1, is one-dimensional, then T is ergodic [7, p. 713].

The author wishes to express her hearty thanks to Prof. I. Sawashima and Prof. F. Niiro for their kind encouragement and valuable suggestions given her throughout these researches.

2. The property (W) and ergodicity

In this section, let E be a Banach space, $\mathfrak{L}(E)$ be the set of bounded linear operators in E, r = r(T) be the spectral radius of $T \in \mathfrak{L}(E)$ and $R(\lambda, T)$ be the resolvent operator.

DEFINITION. Let the convex hull of the set $\{I, T, T^2, \dots\}^{1}$ (resp. the

¹⁾ I is the identity mapping.

orbit $\{x, Tx, T^2x, \dots\}$) be denoted by $\operatorname{co}(T)$ (resp. $\operatorname{co}(Tx)$). An operator $T \in \mathfrak{L}(E)$ is called $\operatorname{ergodic}^2$, if the closure $\operatorname{co}(T)^a$ of $\operatorname{co}(T)$ in the strong operator topology contains an element $P \in \mathfrak{L}(E)$ such that $PT = TP = P = P^2$. An operator $T \in \mathfrak{L}(E)$ is said to have the property (W) if the set $\{||(\lambda - r)R(\lambda, T)|| : \lambda > r\}$ is bounded.

LEMMA 1. Let $T \in \mathfrak{L}(E)$ be an operator with r(T)=1 and the set $\{||M_n||: n \in N\}$ be bounded, where $M_n=(I+T+\cdots+T^{n-1})/n$. Then T has the property (W).

PROOF. Suppose $||M_n|| < C$ for every $n \in \mathbb{N}$. Then by using the relations

$$(1-\mu)\sum_{k=0}^{\infty}\mu^{k}=1$$
 and $(1-\mu)^{2}\sum_{n=1}^{\infty}n\mu^{n-1}=1$ for $0<\mu<1$,

and putting $\mu=1/\lambda$, we get

$$\begin{split} ||(\lambda-1)R(\lambda,T)|| &= ||(1-\mu)\sum_{k=0}^{\infty} T^k \mu^k|| \\ &= ||(1-\mu)^2 \sum_{j=0}^{\infty} \mu^j \sum_{k=0}^{\infty} T^k \mu^k|| = ||(1-\mu)^2 \sum_{n=1}^{\infty} n M_n \mu^{n-1}|| \\ &\leq (1-\mu)^2 \sum_{n=1}^{\infty} n \mu^{n-1} ||M_n|| < C \,, \qquad \text{for every } \lambda > 1 \,, \end{split}$$

which completes the proof.

If an operator $T \in \mathfrak{L}(E)$ is ergodic, there exists a projection to the space $\{x \in E : Tx = x\}$. When an operator $T \in \mathfrak{L}(E)$ has the property (W), the projection to the space $\{x \in E : Tx = rx\}$ does not necessarily exist, but there exists a projection P_* to the space $\{f \in E' : T'f = rf\}$, as shown in the following.

PROPOSITION 1. Let an operator $T \in \mathfrak{L}(E)$ have the property (W) and fix a sequence $\{\lambda_n\}$ such that $\lambda_n > r$ and $\lambda_n \to r$ and an ultrafilter U on N containing no finite set. Then the bounded linear operator P_* defined by

$$P_*f(x) = \mathcal{U} - \lim_{\lambda_n \perp r} (\lambda_n - r)R(\lambda_n, T')f(x)^{3}$$

for every $f \in E'$ and every $x \in E$, is a projection to the space $\{f \in E' : T'f = rf\}$, satisfying the relation $P_*T' = T'P_* = rP_*$.

PROOF. The equation $P_*T'=rP_*$ is obtained by the equation, for every $f \in E'$ and every $x \in E$,

²⁾ This definition of ergodicity is due to [8, p. 179]. When the set $\{\|T^n\|: n \in N\}$ is bounded, this is equivalent to the usual one, that is, $M_n = (I + T + \cdots + T^{n-1})/n$ converges strongly.

³⁾ $U-\lim \xi_n = \bigcap_{F \in \mathcal{I}} \{\xi_m : m \in F\}^a$.

$$\begin{split} P_*T'f(x) &= \mathcal{U} - \lim_{\lambda_n \downarrow r} (\lambda_n - r) R(\lambda_n, T') T'f(x) \\ &= \mathcal{U} - \lim_{\lambda_n \downarrow r} \{\lambda_n (\lambda_n - r) R(\lambda_n, T') f(x) - (\lambda_n - r) f(x)\} \\ &= r P_* f(x) . \end{split}$$

The equation $T'P_*=rP_*$ is easily seen by $T'P_*f(x)=P_*f(Tx)$ and therefore, P_*E' is contained in $\{f \in E': T'f=rf\}$. If f is the proper vector of T', corresponding to r, then

$$\begin{split} P_*f(x) &= \mathcal{U} - \lim_{\lambda_n \downarrow r} (\lambda_n - r) R(\lambda_n, T') f(x) \\ &= \mathcal{U} - \lim_{\lambda_n \downarrow r} (\lambda_n - r) \sum_{k=0}^{\infty} \frac{r^k f(x)}{\lambda_n^{\frac{k}{2}+1}} \\ &= f(x) \quad \text{for every } x \in E, \end{split}$$

which implies that $\{f \in E' : T'f = rf\} \subset P_*E'$. Then we have $P_*E' = \{f \in E' : T'f = rf\}$ and $P_*^2 = P_*$.

REMARK. If T is a positive operator in a partially ordered Banach space⁴, the projection P_* is a positive projection since the ultrafilter limit preserves the order relation.

A dual operator $P'_* \in \mathfrak{L}(E'')$ of P_* is not necessarily a projection to the space $\{\varphi \in E'' : T''\varphi = r\varphi\}$, although P_*E'' is contained in $\{\varphi \in E'' : T''\varphi = r\varphi\}$ by Prop. 1. However we can define a projection to the space $\{\varphi \in E'' : T''\varphi = r\varphi\}$, applying Prop. 1 to $T' \in \mathfrak{L}(E')$ instead of $T \in \mathfrak{L}(E)$. Let P_{**} be the projection defined by

$$P_{**}\varphi(f) = \mathcal{U} - \lim_{\lambda_n \perp r} (\lambda_n - r) R(\lambda_n, T'') \varphi(f)$$

for every $\varphi \in E''$ and every $f \in E'$, where $\{\lambda_n\}$ and $\mathcal U$ are the same sequence and the ultrafilter used in the definition of P_* in Prop. 1.

By the definition of P_* and P_{**} , the following lemma is obtained easily.

LEMMA 2. If $T \in \mathfrak{L}(E)$ has the property (W), then $P_{**}|E$, the restriction of P_{**} to E, is equal to $P'_*|E$ and the space $P'_*E \cap E$ coincides with the space $\{x \in E : Tx = rx\}$.

REMARK. In general, the restriction of P'_* to E is not in $\mathfrak{L}(E)$. If P'_*E is contained in E, $P'_*|E$ is a projection to the space $\{x \in E: Tx = rx\}$ and T becomes ergodic if r(T) = 1, as shown in the following.

PROPOSITION 2. Let $T \in \mathfrak{L}(E)$ be an operator with r(T)=1.

- I) If T has the property (W), the following $i) \sim V$ are equivalent.
- II) The condition vi) implies i) \sim v).

⁴⁾ In this paper, a partially ordered Banach space means a real partially ordered Banach space with a proper, closed, generating and normal cone.

- i) T is ergodic.
- ii) There exists a projection P to the space $\{x \in E : Tx = x\}$ such that PT = TP = P and its dual P' is a projection to the space $\{f \in E' : T'f = f\}$.
- iii) There exists a projection P such that

$$\lim_{\lambda \downarrow 1} (\lambda - 1) R(\lambda, T) x = Px, \quad \text{for every } x \in E.$$

- iv) P_* is w^* -continuous.
- v) $P'_*E \subset E$.
- vi) $M_n = (I + T + \cdots + T^{n-1})/n$ converges strongly.

PROOF. I) i) \Rightarrow ii): By the definition of ergodicity, the equation $PT=TP=P=P^2$ is clear and implies the relations $PE\subset\{x\in E: Tx=x\}$ and $P'E'\subset\{f\in E': T'f=f\}$. If the relation Tx=x holds, co $(Tx)^a$ consists of $\{x\}$ and hence Px=x and $PE=\{x\in E: Tx=x\}$. Suppose that the relation T'f=f holds. Since f is continuous, f(x)=f(y) for every element y of co $(Tx)^a$ and so f(x)=f(Px). Therefore P'f(x)=f(Px)=f(x) for every $x\in E$. Then $P'E'=\{f\in E': T'f=f\}$.

- ii) \Rightarrow iii): For every element x of PE, $\lim_{\lambda \downarrow 1} (\lambda 1)R(\lambda, T)x = Px$ is obtained easily. For every element x of (I-T)E, $\lim_{\lambda \downarrow 1} (\lambda 1)R(\lambda, T)x = 0$ = Px is obtained, since T has the property (W). By using Hahn-Banach theorem and the fact that the set (I-P)E is closed, we get the relation $(I-P)E = ((I-T)E)^a$, which shows that for every element x of (I-P)E, $\lim_{\lambda \downarrow 1} (\lambda 1)R(\lambda, T)x = 0 = Px$ since T has the property (W).
 - iii) \Rightarrow iv): By the relation $P_*=P'$, P_* is w^* -continuous.
- iv) \Rightarrow v): For every $x \in E$ and every $\varepsilon > 0$, consider a w^* -neighborhood $U(0, x, \varepsilon)$ of 0 in E', then there exists a w^* -neighborhood V such that $f \in V$ implies $P_* f \in U(0, x, \varepsilon)$, that is, $|P'_* x(f)| = |P_* f(x)| < \varepsilon$. This means that $P'_* x$ is $\sigma(E', E)$ continuous, hence $P'_* x \in E$.
 - $v) \Rightarrow ii$) is obvious by Lemma 2.
- iii) \Rightarrow i): The relation $PT=TP=P=P^2$ is easily obtained. We have to show that P is contained in $\operatorname{co}(T)^a$, that is, for every $\varepsilon>0$ and a finite set $\{x_1,\cdots,x_n\}$ in E, there exists $S\in\operatorname{co}(T)$ satisfying $||Sx_i-Px_i||<\varepsilon$ $(i=1,\cdots,n)$. Put $\alpha=\max\{||x_1||,\cdots,||x_n||\}$ and $\varepsilon'=\min\left\{1,\frac{\varepsilon}{(M+2)a+1}\right\}$, where M is such a number as $\sup_{\lambda>1}||(\lambda-1)R(\lambda,T)||< M$. Find λ_0 such that $2>\lambda_0>1$ and $||(\lambda_0-1)R(\lambda_0,T)x_i-Px_i||<\varepsilon'$ $(i=1,\cdots,n)$. Since $\lambda_0>1$, $S_n=\sum\limits_{k=0}^n\frac{T^k}{\lambda_0^{k+1}}$ converges to $R(\lambda_0,T)$ in the uniform topology. Therefore there exists n_0 such that $\left\|R(\lambda_0,T)-\sum\limits_{k=0}^{n_0}\frac{T^k}{\lambda_0^{k+1}}\right\|<\varepsilon'$ and $0<\frac{\lambda_0-1}{\lambda_0^{n_0}-1}<\varepsilon'$. Put $S=S_n/\sum\limits_{k=0}^{n_0}\frac{1}{\lambda_0^{k+1}}$. Then S is a desired one.
- II) The condition vi) implies the set $\{||M_n||: n \in N\}$ is bounded by the principle of uniform boundedness. Hence T has the property (W)

by Lemma 1. ii) is easily obtained from vi), since

$$\frac{T^n}{n}x = \frac{I + \dots + T^n}{n+1}x \cdot \frac{n+1}{n} - \frac{I + \dots + T^{n-1}}{n}x$$

converges to 0 as $n \rightarrow \infty$ for every $x \in E$.

REMARK. If $||T^n/n|| \to 0$, the equivalence between iii) and vi) in the uniform operator topology has been obtained in the appendix of [4]. If T is a positive operator with r(T)=1 in a partially ordered Banach space, the equivalence between i) \sim v) and vi) is obtained in a similar way as Th. 5 of [2] by a Tauberian theorem. When T is not a positive operator and the set $\{||T^n||: n \in N\}$ is unbounded, i) \sim v) does not necessarily imply vi).

COUNTER-EXAMPLE. Let

$$E = C(\{x_1, x_2, x_3\})$$
 and $T = \begin{pmatrix} 0 & -1 & 0 \ -1 & 0 & 0 \ 0 & -1 & -1 \end{pmatrix}$.

Then it is clear that

$$\lim_{\lambda \downarrow 1} (\lambda - 1) R(\lambda, T) = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{4} & -\frac{1}{4} & 0 \end{pmatrix},$$

$$T^{2n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m & n & 1 \end{pmatrix} \text{ and } T^{2n+1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & m & n & 1 \end{pmatrix}.$$

From these, we see

$$\lim M_{2n} = egin{pmatrix} rac{1}{2} & -rac{1}{2} & 0 \ -rac{1}{2} & rac{1}{2} & 0 \ 0 & -rac{1}{2} & 0 \end{pmatrix}
eq egin{pmatrix} rac{1}{2} & -rac{1}{2} & 0 \ -rac{1}{2} & rac{1}{2} & 0 \ -rac{1}{2} & 0 & 0 \end{pmatrix} = \lim M_{2n+1},$$

which implies that M_n does not converge.

3. Properties of irreducible operators

Hereafter E denotes a real partially ordered Banach space with a positive cone K and T a positive operator of $\mathfrak{L}(E)$ (i. e. $TK \subset K$) with the spectral radius r.

DEFINITION. An element $x \in K$ is called a non-support point of K, if f(x) > 0 for every nonzero f in K'. A linear form $f \in E'$ (resp. An operator $U \in \mathfrak{L}(E)$) is strictly positive if f(x) > 0 (resp. $Ux \in K$ and $Ux \neq 0$) for every nonzero x in K. T is irreducible⁵⁾, if there exists a natural number n = n(x, f) such that $f(T^n x) > 0$ for every nonzero x in K and for every nonzero f in K'.

PROPOSITION 3. Let T be an irreducible operator with the property (W) and r belong to the point spectrum of T. Then r is positive and every proper vector, corresponding to r, of T in K (resp. of T' in K') is a non-support point of K (resp. a strictly positive linear form).

PROOF. Since r belongs to the point spectrum of T, the operator P'_* is nonzero by Lemma 2. So P_* is nonzero projection to the proper space of T', corresponding to r, hence P_*K' has nonzero element, since K' is generating. By using nonzero $f_0 \in P_*K'$, we can prove in the same way as Th. 2 of [5].

PROPOSITION 4. Let T be nonzero operator with the property (W). If the following condition (a) is satisfied, the spectral radius r is positive and P_* is strictly positive. If the conditions (a) and (b) are satisfied, T is irreducible.

- (a) The proper space of T, corresponding to r, contains a non-support point x_0 of K.
- (b) Every proper vector of T', corresponding to r, in K' is a strictly positive linear form.

PROOF. For every nonzero $f \in K'$, the relation $P_*f(x_0) = f(P_*'x_0) = f(x_0) > 0$ follows from Lemma 2 and the condition (a). So P_* is strictly positive. That r is positive comes from the relations $T'f(x_0) = f(Tx_0) = f(Tx_0) = f(Tx_0) = rf(x_0)$ and $T \neq 0$ and the fact that x_0 is a non-support point of K. We can prove that T is irreducible in a similar way as Th. 2 of [5], using the property of the ultrafilter limit instead of the C. Neumann's series.

By Prop. 3 and 4, we get the following theorem.

THEOREM 1. Let nonzero positive operator $T \in \mathfrak{L}(E)$ have the property (W) and the proper space of T, corresponding to r, contain nonzero point of K. Then i) and ii) are equivalent.

- i) T is irreducible.
- ii) (a) The proper space of T, corresponding to r, contains a non-support point of K.

⁵⁾ This definition of irreducibility has been introduced by I. Sawashima in [5] as semi-non-supportness.

(b) Every proper vector of T', corresponding to r, in K' is strictly positive.

REMARK. The condition (a) in Theorem 1 can be replaced by the following:

(a') Every proper vector of T, corresponding to r, in K is a non-support point.

4. The property that the proper spaces of T and T', corresponding to r, are one-dimensional

THEOREM 2. Let T have the property (W) and r(T)=1 belong to the point spectrum of T. Then the following i) and ii) are equivalent.

- i) T is ergodic and the proper space of T, corresponding to 1, is one-dimensional.
 - ii) The proper space of T', corresponding to 1, is one-dimensional.

PROOF. $i) \Rightarrow ii$) is obvious.

ii) \Rightarrow i): Let the proper space of T', corresponding to 1, be one-dimensional. Since T has the property (W), $P_*E'=\{f\in E': T'f=f\}$ is one-dimensional by Prop. 1 and the assumption. Hence by fixing some nonzero $f_0\in E'$ and some nonzero $x_0\in E$ such that $T'f_0=f_0$, $Tx_0=x_0$ and $f_0(x_0)=1$, we have $P_*f=f(x_0)f_0$ for every $f\in E'$. So for every $x\in E$, the relation $P'_*x=f_0(x)x_0$ is obtained by $P'_*x(f)=f_0(x)x_0(f)$. Since x_0 is an element of E, P'_*E is contained in E and $P'_*|E$ is a projection to the space $\{x\in E: Tx=x\}$ by Lemma 2. By Prop. 2, we get the statement i).

REMARK. In the proof, we did not use any order property in E. Therefore Theorem 2 can be applied to operators in arbitary Banach spaces.

THEOREM 3. Let T be irreducible and r belong to the point spectrum of T. Then the following are equivalent.

- i) The proper space of T, corresponding to r, is a one-dimensional subspace spanned by a non-support point of K.
- ii) There exists a bounded positive projection Q to the proper space of T, corresponding to r.

Moreover, if there exists a strictly positive linear form f_0 such that $T'f_0=rf_0$, the projection Q is strictly positive.

PROOF. When there exists a bounded positive projection Q to the proper space, we can prove that the proper space of T, corresponding to r, is one-dimensional in the similar way as Th. 1 of [5]. Conversely, suppose the proper space is one-dimensional and x_0 is a non-support point of K such that $Tx_0=rx_0$. Since $f(x_0)>0$ for every nonzero $f \in K'$, we

can find $f_1 \in K'$ such that $f_1(x_0) = 1$. Put $Qx = f_1(x)x_0$. Then Q is a desired one.

If there exists a strictly positive linear form f_0 , then $f_0(x_0) = a > 0$ and $Qx = (1/a)f_0(x)x_0 \neq 0$ for every nonzero $x \in K$. So Q is strictly positive.

The two results obtained by I. Sawashima [5] and H. H. Schaefer [8] follow Th. 1, 2 and 3. The following is the extension of Prop. 8.5 of [8] to operators in partially ordered Banach spaces by the above theorems.

COROLLARY. Let T be ergodic, P be the projection associated with ergodicity and r(T)=1 belong to the point spectrum of T. Then the following are equivalent.

- (a) T is irreducible.
- (b) P is strictly positive, with range a one-dimensional subspace of E spanned by a non-support point of K.
- (c) P' is strictly positive, with range a one-dimensional subspace of E' spanned by a strictly positive linear form.

PROOF. (a) \Rightarrow (b): Since P is nonzero projection and the cone K is generating, PK has nonzero element. (b) is obtained by Prop. 3 and Th. 3. (b) \Rightarrow (c) is obtained by Prop. 4 and Th. 2. (c) \Rightarrow (a) is obtained by the following Lemma and Th. 1.

LEMMA 3. Let T have the property (W) and r(T)=1 belong to the point spectrum of T. Then the following are equivalent.

- i) The projection P_* is strictly positive, with range a one-dimensional subspace of E' spanned by a strictly positive linear form.
- ii) The proper space of T', corresponding to 1, is a one-dimensional subspace of E' spanned by a strictly positive linear form and the proper space of T, corresponding to 1, contains a non-support point of K.

PROOF. i) \Rightarrow ii): By the same way as the proof of ii) \Rightarrow i) of Th. 2, we can find nonzero $x_0 \in E$ and nonzero $f_0 \in K'$ such that $Tx_0 = x_0$, $T'f_0 = f_0$ and $P_*f = f(x_0)f_0$ for every $f \in E'$. Since P_* is strictly positive, $f(x_0) > 0$ for every $f \in K'$. Then x_0 is a non-support point of K. ii) \Rightarrow i) is obtained by Prop. 4.

References

- [1] F.R. Gantmacher: The theory of matrices, Chelsea Pub. Co., 1959.
- [2] S. Karlin: Positive operators, J. Math. Mech., 8 (1959), 907-937.
- [3] M.G. Krein and M.A. Rutman: Linear operators leaving invariant a cone in a Banach space, Uspehi Mat. Nauk, 3 (23), (1948), 3-95: Amer. Math. Soc. Transl. Ser. I, 10 (1962), 199-325.
- [4] M. Lin: On the uniform ergodic theorem, II. Proc. Amer. Math. Soc., 46 (1974),

217-225.

- [5] I. Sawashima: On spectral properties of some positive operators, Nat. Sci. Rep. Ochanomizu Univ., 15 (1964), 53-64.
- [6] H.H. Schaefer: Some spectral properties of positive linear operators, Pacific J. Math., 10 (1960), 1009-1019.
- [7] H.H. Schaefer: Invariant ideals of positive operators in C(X), I. Illinois J. Math., 11 (1967), 703-715.
- [8] H.H. Schaefer: Banach lattices and positive operators, Springer-Verlag, Berlin, Heidelberg, New York, 1974.