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1. Introduction

It is well known as a part of results by O. Perron and G. Frobenius
that a non-negative matrix 7T is irreducible if and only if each one of
the proper spaces of T' and 77, corresponding to the spectral radius »(T),
is a one-dimensional subspace spanned by a positive element [1]. This
property has been extended to infinite-dimensional topological ordered
vector spaces by many authors [2, 8, 5, 6, 8]. Among them, I. Sawa-
shima gave the extension to the case of an operator 7' in a partially
ordered Banach space, whose resolvent has the point A=»(T") as its pole
[6]. Further, H. H. Schaefer has extended this property to an ergodic
operator in a Banach lattice [8]. In this paper, the author investigates
an extension of these results to the more general operators in a par-
tially ordered Banach space, which are not necessarily ergodic. We
examine operators with the property (W) in a general Banach space
in Section 2 and give a result about irreducibility in Section 3 (Th. 1).
Section 4 is devoted to an investigation of the property that the proper
spaces of T and 7", corresponding to 7(T'), are one-dimensional (Th. 2 &
8). Theorem 2 is also a generalization of the results by H. H. Schaefer
that if T is a Markov operator in C(X) such that the proper space of
T’, corresponding to 1, is one-dimensional, then 7' is ergodic [7, p. 713].

The author wishes to express her hearty thanks to Prof. I. Sawa-
shima and Prof. F. Niiro for their kind encouragement and valuable
suggestions given her throughout these researches.

2. The property (W) and ergodicity

In this section, let E be a Banach space, ¥(£) be the set of bounded

linear operators in E, »r=»(T) be the spectral radius of T=%(E) and
R(2, T') be the resolvent operator.

DEFINITION. Let the convex hull of the set {I, T, T?% ---} (resp. the

1) [ is the identity mapping.
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orbit {x, T, T?x, ---}) be denoted by co (T") (resp. co(T'x)). An operator
TeQ(E) is called ergodic®, if the closure co(T)* of co(T) in the strong
operator topology contains an element Pe@(E) such that PT=TP=P
=P%. An operator T<Q(F) is said to have the property (W) if the set
{lA—r)RQ, T)|| : 2>} is bounded.

LEMMA 1. Let Te2(E) be an operator with v(T)=1 and the setl
{IM,]] : ne N} be bounded, where M,=I+T+ -+ +T*Y[n. Then T has
the property (W).

PROOF. Suppose ||M,||<C for every n=N. Then by using the re-
lations

oo

(1—-y)k§:pk=1 and (1—p)’ Snu*'=1  for 0<p<1,
=0 n=1 .

and putting p=1/1, we get
IG=DEG, DlI=N1— 0 E T

=l — 4%, 3 Tl =1L~ 6 nMop |
g(l—p)zinw"ll]Mn[KC, for every 1>1,

which completes the proof.

If an operator T'=R%(E) is ergodic, there exists a projection to the
space {¢=E: Tex=x}. When an operator T'=(E) has the property (W),
the projection to the space {x=FE: Tx=rx} does not necessarily exist,
but there exists a projection P, to the space {feE’: T'f=rf}, as shown
in the following.

PROPOSITION 1. Let an operator T € LR(E) have the property (W) and
fix a sequence {1,} such that 2,>r and A,—r and an ultrafilter U on N
containing no finite set. Then the bounded linear operator Py defined by

Pyf(z)=v—lim (2,—r) R, T f (2)®

Jor every feE' and every x< E, 1s a projection to the space {f€E':
T'f=rf}, satisfying the relation Py T'=T'P,=1rP,.

PROOF. The equation P,T'=vP, is obtained by the equation, for
every feE’ and every < E,

2) This definition of ergodicity is due to [8, p. 179]. When the set {||T"||: nN}
is bounded, this is equivalent to the usual one, that is, M,=({/+T+ -:- +T? 1) /n con-
verges strongly.

3) U-limé&,= N {En: meF}e,

Feqy
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P*T'f(w)———CU—iiIlI} (An—7)R(4a, T"T'f ()
=U—lim {20(2a—= 1) B4, T')f (0) — (2a—1)S ()}

=rPyf(%) .

The equation T’P,=rPy is easily seen by T'Pyf(x)=Psf(Tz) and there-
fore, P,E’ is contained in {feE': T'f=rf}. If f is the proper vector
of 7', corresponding to », then

P, f(x)=vU —}hﬁl (=1 Ry, T")f (%)

=—lim (2, —n) 5 L

k=0 2;;.“
=f(x) for every z€ FE,

which implies that {feE’': T'f=rf}CP,E'. Then we have P,E'=
{fe R . T'f=rf} and Pi=P;. :

REMARK. If T is a positive operator in a partially ordered Banach
space®, the projection P, is a positive projection since the ultrafilter
limit preserves the order relation. '

A dual operator P.sQ(E") of P, is not necessarily a projection to
the space {p=E": T"p=r¢p}, although P.E"” is contained in {psE":
T"p=r¢} by Prop. 1. However we can define a projection to the space
fpe B : T"p=7r¢p}, applying Prop. 1 to T'=(E") instead of T =(E).
Let Py« be the projection defined by

for every o< E" and every feF/, Whei‘e {2, and U are the same se-
quence and the ultrafilter used in the definition of P, in Prop. 1.

By the definition of P, and P, the following lemma is obtained
easily.

LEMMA 2. If TeR(FE) has the property (W), then Py|E, the restric-
tion of Pyx to E, is equal to PL|E and the space PL{ENE coincides with
the space {x= K : Tx=rx}.

REMARK. In general, the restriction of P{ to E is not in %(E).
If PLE is contained in E, P/|E is a projection to the space {z€E':
Tx=rx} and T becomes ergodic if »(T')=1, as shown in the following.

PROPOSITION 2. Let T=R2(E) be an operator with r(T)=1.
I) If T has the property (W), the following i)~V) are equivalent.
II) The condition vi) implies i)~v).

4) In this paper, a partially ordered Banach space means a real partially ordered
Banach space with a proper, closed, generating and normal cone.
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i) T 1is ergodic.

ii) There exists a projection P to the space {x=E : Tx=2a} such that
PT=TP=P and its dual P’ is a projection to the space {fE' :
T'f=f}.

iii) There exists a projection P such that

lzi}n (A—-1)R(A, T)x=Px, for every x< E.
1

iv) Py 18 w*-continuous.
v) PlECE.
vi) My,=I+T++ -+ +T"Y)[n converges strongly.

Proor. I) i)=>ii): By the definition of ergodicity, the equation
PT=TP=P=P? is clear and implies the relations PEC{zxc E: Te=u}
and PPE'C{feE': T'f=f}. If the relation Tw=x holds, co(7Tx)* consists
of {#} and hence Px=« and PE={xsFE: Tx=x}. Suppose that the re-
lation T/f=f holds. Since f is continuous, f(x)=f(y) for every element
y of co(Tx)® and so f(x)=f(Px). Therefore P f(x)=f(Px)=f(x) for every
xeE. Then PE'={feE: T'f=f}.

ii)>iii): For every element z of PE, 1}1}}(2—1)R(2,T)%=Px is

obtained easily. For every element x of (I—T7T)E, 13}111(2—1)13(2, T)x=0

= Px is obtained, since T has the property (W). By using Hahn-Banach
theorem and the fact that the set (/—P)E is closed, we get the relation
(I—P)E=((I-T)E)*, which shows that for every element « of (I—P)E,
121{111(2-—1)3(2, T)x=0=Px since T has the property (W).

iii)>iv): By the relation P,=P’, P, is w*-continuous.

iv)> v): For every x=E and every >0, consider a w*-neigh-
borhood U(0, z, ¢) of 0 in E’, then there exists a w*-neighborhood V
such that feV implies P.feU(0, x, ¢), that is, |Pix(f)=|Psf(2)<e.
This means that P{x is ¢(E’, E) continuous, hence PlxcE.

v) = ii) is obvious by Lemma 2.

iii)>i): The relation PT=TP=P=P? is easily obtained. We have
to show that P is contained in co(7)% that is, for every ¢>0 and a
finite set {x,, -+, #,} in E, there exists Seco(T) satisfying ||Sz;— Pxl|

=1, eoe = cen ! —mi R
<e (1=1, -»-,m). Put a=max {||zl, -~ [|2.]|} and ¢ =min {1, I+ 2)a+1 },
where M is such a number as szgpll(l—l)R(z, Tll<M. Find A, such
that 2>2,>1 and |[(Z,—1)R(2, T)x,— Px;ll<é (=1, ---,n). Since A,>1,
S’L:éo’_—,l?fl converges to R(A, T') in the uniform topology. Therefore

<¢ and 0< 2'3;":11 <é. Put
0

there exists n, such that “R(Zo, T )—kZ}o ——27,:1
=0 /A0
7o

S=8S.,/ —+r. Then S is a desired one.
k=0 0

II) The condition vi) implies the set {||M.,]|: n= N} is bounded by
the principle of uniform boundedness. Hence T has the property (W)
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by Lemma 1. ii) is easily obtained from vi), since

™ = I+ eee 4T - n+l T4 - 4T ¢
n n+1 n n

converges to 0 as n—oo for every z< E.

REMARK. If ||T"/n||—0, the equivalence between iii) and vi) in the
uniform operator topology has been obtained in the appendix of [4].
If T is a positive operator with »(T)=1 in a partially ordered Banach
space, the equivalence between i)~v) and vi) is obtained in a similar
way as Th. 5 of [2] by a Tauberian theorem. When T is not a positive
operator and the set {||T"|: ne N} is unbounded, i)~v) does not neces-
sarily imply vi).

COUNTER-EXAMPLE. Let

0 —1 0
E:C({xl, 962, 063}) and T= '_1 0 O .
0 —1 -1
Then it is clear that
11
o g 0
im(A—1)RQ, T)= |-+ 1 ¢
111 ’ 2 2 !
1 1
T ¢ O
1 0 0 0 -1 0
7= 0 1 0 and T*%=| -1 0 0
n n 1 -n —n—1 -1
From these, we see
11 1 1
2 2 0 2 g 0
. 1 1 1 .
]11’1’.1 Mgn% —7 —’2—" 0 +* —‘7 % 0 :11mM2n+1,
1 1
0 - 5 0 5 0 O

which implies that M, does not converge.

3. Properties of irreducible operators

Hereafter E denotes a real partially ordered Banach space with a
positive cone K and T a positive operator of ¥ E) (i.e. TKCK) with
the spectral radius 7.
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DEFINITION. An element x= K is called a non-support point of K,
if f(z)>0 for every nonzero f in K’. A linear form f<E’ (resp. An
operator U< ¥ E)) is strictly positive if f(x)>0 (resp. Uz K and Ux+0)
for every nonzero x in K. T is irreducible®, if there exists a natural
number n=n(x, f) such that f(T"x)>0 for every nonzero z in K and
for every nonzero f in K'.

PROPOSITION 3. Let T be an irreducible operator with the property
(W) and r belong to the point spectrum of T. Then r is positive and
every proper vector, corresponding to v, of T in K (resp. of T' in K')
18 @ non-support point of K (resp. a strictly positive linear form).

PROOF. Since r belongs to the point spectrum of T, the operator
P/ is nonzero by Lemma 2. So P, is nonzero projection to the proper
space of T, corresponding to 7, hence PyK’ has nonzero element, since '
K’ is generating. By using nonzero f,€ P,K’', we can prove in the same
way as Th. 2 of [5].

PROPOSITION 4. Let T be nonzero operator with the property (W).
If the following condition (a) is satisfied, the spectral radius r is positive
and Py is strictly positive. If the conditions (a) and (b) are satisfied,
T 1s irreducible.

(a) The proper space of T, corresponding to r, contains a mon-
support point x, of K.

(b) Ewvery proper vector of T', corresponding to r, in K' is a strictly
positive linear form.

PROOF. For every nonzero f€ K’, the relation P, f(x)=s(PLix,)=
f(x,)>0 follows from Lemma 2 and the condition (a). So Py is strictly
positive. That » is positive comes from the relations 7"f(z))=f(Tx,)=
flrax)=rf(x,) and T+0 and the fact that x, is a non-support point of K.
We can prove that T is irreducible in a similar way as Th. 2 of [5],
using the property of the ultrafilter limit instead of the C. Neumann’s
series.

By Prop. 3 and 4, we get the following theorem.

THEOREM 1. Let nonzero positive operator T<X(E) have the prop-
erty (W) and the proper space of T, corresponding to r, contain nonzero
point of K. Then i) and ii) are equivalent.

i) T s wrreducible.

ii) (a) The proper space of T, corresponding to r, contains a non-
support point of K.

5) This definition of irreducibility has been introduced by I. Sawashima in [5] as
semi-non-supportness.
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(b) Ewery proper vector of T', corresponding to r, in K' is strictly
positive.

REMARK. The condition (a) in Theorem 1 can be replaced by the
following :

(') Every proper vector of T, corresponding to 7, in K is a non-
support point.

4. The property that the proper spaces of 7 and 7',
corresponding to 7, are one-dimensional

THEOREM 2. Let T have the property (W) and r(T)=1 belong to the
point spectrum of T. Then the following i) and ii) are equivalent.

i) T is ergodic and the proper space of T, corresponding to 1, is
one-dimensional.

ii) The proper space of T', corresponding to 1, is one-dimensional.

PROOF. 1i)=>ii) is obvious.

ii)=>1): Let the proper space of T, corresponding to 1, be one-
dimensional. Since T has the property (W), P E'={fcE : T'f=f} is
one-dimensional by Prop. 1 and the assumption. Hence by fixing some
nonzero fo, E’ and some nonzero z,= E such that T'f,=f, Tx,=2, and
Jox)=1, we have Pyf=f(x,)f, for every f€E'. So for every x< E, the
relation PJlx=f(x)x, is obtained by Plix(f)=f(x)z(f). Since , is an
element of E, P/E is contained in F and P/|F is a projection to the
space {x= E: Tx=x} by Lemma 2. By Prop. 2, we get the statement i).

REMARK. In the proof, we did not use any order property in E.
Therefore Theorem 2 can be applied to operators in arbitary Banach
spaces.

THEOREM 3. Let T be trreducible and r belong to the point spectrum
of T. Then the following are equivalent.

i) The proper space of T, corresponding to r, s a one-dimensional
subspace spanned by a non-support point of K.

i) There exists a bounded positive projection Q to the proper space
of T, corresponding to r.

Moreover, if there exists a strictly positive linear form f, such that
T'fo=rf, the projection Q is strictly positive.

PROOF. When there exists a bounded positive projection @ to the
proper space, we can prove that the proper space of T, corresponding
to 7, is one-dimensional in the similar way as Th. 1 of [5]. Conversely,
suppose the proper space is one-dimensional and %, is 2 non-support point
of K such that Txz,=rx, Since f(x,)>0 for every nonzero feK’, we
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can find fie K’ such that fi(x,)=1. Put Qr=si(z)x,, Then Q is a desired
one.

If there exists a strictly positive linear form f, then ffxz,)=a>0
and Qx=(1/a)f(x)x,+ 0 for every nonzero x= K. So Q is strictly positive.

The two results obtained by I. Sawashima [5] and H.H. Schaefer
[8] follow Th. 1, 2 and 3. The following is the extension of Prop. 8.5

of [8] to operators in partially ordered Banach spaces by the above
theorems.

COROLLARY. Let T be ergodic, P be the projection associated with

ergodicity and r(T)=1 belong to the point spectrum of T. Then the fol-
lowing are equivalent.

(a) T is irreducible.
(b) P is strictly positive, with range a one-dimensional subspace of
E spanned by a non-support point of K.

(c¢) P’ is strictly positive, with range a one-dimensional subspace of
E’ spanned by a strictly positive linear form.

PROOF. (a)=>(b): Since P is nonzero projection and the cone K is
generating, PK has nonzero element. (b) is obtained by Prop. 3 and
Th. 8. (b)>(c) is obtained by Prop. 4 and Th. 2. (c)=>(a) is obtained
by the following Lemma and Th. 1.

LEMMA 3. Let T have the property (W) and r(T')=1 belong to the
point spectrum of T. Then the following are equivalent.

i) The projection Py 1s strictly positive, with range a one-dimen-
stonal subspace of E’' spanned by a strictly positive linear form.
~ ii) The proper space of T', corresponding to 1, is a one-dimensional
subspace of E’' spanned by a strictly positive linear form and the proper
space of T, corresponding to 1, contains a non-support point of K.

PROOF. 1i)=ii): By the same way as the proof of ii)>1i) of Th. 2,
we can find nonzero z,= E and nonzero f,€ K’ such that Te,=x, T o=/
and Pif=f(2,)f, for every feE'. Since P, is strictly positive, f(x,)>0

for every fe K’. Then x, is a non-support point of K. ii)=1i)is obtained
by Prop. 4.
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