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Let Q be the rational number field. For any algebraic number field
k of finite degree over @, we shall denote by A, the maximal abelian
extension of k and by Gal(A,/k) the Galois group of A, over k equipped
with the Krull topology. The present paper exhibits some counter-
examples to the following statement ; for two algebraic number fields &
and &' of finite degree over @, an isomorphism Gal(A,/k)=Gal(Ay[K') of
the Galois groups of maximal abelian extensions A,/k and Ap/k' implies
an isomorphism k=Fk’. In other words we shall see that Gal(A,/k) does
not determine the isomorphism class of an algebraic number field k.
Furthermore, the counterexamples which we give will show that even
if Gal(A,/k) and Gal(A,[/k') are isomorphic, the ideal class groups of k
and &' are not necessarily isomorphic.

§1. Invariants of the character group of Gal(4,/k).

Let k& be an algebraic number field of finite degree over @ and X
the character group of Gal(A4,/k) with discrete topology. The structure
of Gal(A./k) is determined by that of X by virtue of duality theorem.
X is known to be a torsion group. We shall denote by X, the l-compo-
nent of X for any prime number I. Let X;. be the largest divisible
subgroup of X; and X/ . the subgroup of all divisible elements in X.
Then X, . is a direct summand of X,. Since X . is of finite rank,” X; .
is isomorphic to the direct product of finite number of Z(I, ), where
Z(l, ) is the group of roots of unity whose orders are powers of [.
Thus X, is isomorphic to the direct product of finite number of Z(I, o)
and X,/X, ... We shall denote by dim X; the number of Z(I, ) in the
above direct product. X;/X;. is a countable reduced I-group, so that the
structure is determined by the Ulm invariants.? Let v, (v=1,2,+-+) be

1) Let M be a torsion abelian /-group and L the subgroup of M which consists of
all the elements x of M with x!=1. Then L may be regarded as a vector space over
the prime field of characteristic /, of which dimension we shall call the rank of M.

2) cf.[2].
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the Ulm invariants attached to finite ordinal numbers and v.., (v=1, 2,+*)
be the Ulm invariants attached to transfinite ordinal numbers (o+v—1
(v=1,2,-*). Ve, (v=1,2,--+) coincide with the Ulm invariants of X].
/X, .. Since X!./X;. isof finite rank, X!./X; . is a finite group®; v..,
is the number of cyclic factors of order I” in the direct decomposition
of X|./X,.. Then the structure of X; is determined by dim X;, v, (v=
1,2 +) and v., (v=1,2,--:). Following the terminology of Kubota, we
shall call v, and v.., the finite and the wnfinite Ulm invariants of X
respectively. The structure of X is determined by the set of invariants
dim X;, v, (v=1,2, ) and v., (v=1,2,:-+), where I runs all prime num-
bers.

§2. The result of Kubota.
In addition to the above notations we shall use the following ones:

N; the absolute degree of k&
l; a prime number
[, %, ---; all the prime factors of [ in k
e.,; the group of the units of £ which are {”-powers in every
l;-completion %, of k&
t,; the natural number which satisfies I"1=(e,,,: €;,,+1) for
every sufficiently large v
C.; a primitive [-th root of unity
v, ; the natural number such that the field k({;) contains a
primitive [”:-th root of unity but no primitive I*™-th
root of unity
b,; the number of direct factors of order [* in the direct
decomposition of the ideal class group of k into indecom-
posable cyclic groups
o, ; the group of roots of umity in k;,
k* and ki, ; the multiplicative group of k and k;, respectively
B®; the group of Sk such that the principal ideal (B) is
the I*-th power of an ideal of k£ (v=0,1, 2, --)
BY; the group of € B such that 8 isin w, k" for every
(»=0,1,2,--).

Then the theorem of Kubota ([1]) can be expressed as follows.

THEOREM.
( i ) dimXL:N_ﬂL.
(ii) U,,:{ 0 (V<VL)

o (V = 2)1).

3) A reduced torsion abelian™group of finite rank is a finite group. (cf.[2]7 9.
theorem 9).
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(iii) If i#2 or I=2 and k is not strongly radical,”

Yoo,y ’ B(y—l):B(v-—l) (v-l-l): w+1)
popr B BN B, =12,

§3. Invariants dim X, and », for imaginary quadratic fields.

From now on we shall consider imaginary quadratic fields Q(~/—m),
where m is a square-free integer >0.

As p=0 for any imaginary quadratic field, dim X;=N—y,=2 for all
prime [

From the definition of v; we have the following.

})2:2, ))L:1 (l-?l'-Z) fOI‘ Q(‘\/:lﬁ),
y,=1 (for all 1) for Q(v/—m), m#1.

We observe that the finite Ulm invariants v, (v=1, 2, ---) are the same

for all Q(~/—m ), m=+1.

§4. Strongly radical fields.

Let Q(2, o) be the field obtained by adjunction to @ of all 2"-th
roots of unity, where m runs natural numbers. An algebraic number
field k£ of finite degree is said to be a radical field if the intersection
ENQ(2, o) is a real field. If k is a radical field, there exists a natural
number T'=2 such that £NQ(2, c0)=Q({,r+;7 ), where {,r is a primitive
2T-th root of unity. Setting Ar=({,r.1+{7+1),, we call 1r the radical
number of k. Now denoting by 1,1, --- all the prime factors of 2 and
by k;, the l-completion of k, we say that k is strongly radical if we
have 2r=12;{;, for every ¢, where 4; is an element of k,, and {; is a root
of unity in k.

Now all imaginary quadratic fields Q(~/—m ) except Q(+/—1) and
Q(+~/=2) are radical fields with Q(v—m)NQ(2, ©)=Q. Therefore the
radical number is 2.

PROPOSITION 1. Q(+/—m){(m+1,2) is strongly radical if and only
if m=1 (mod 8) (m : odd), or if m/2=+1 (mod8) (m : even).

PrOOF. If Q(+~/—m) (m+1,2) is strongly radical, we have 2=22¢,,
where A, (i€ Qv —m ), and {; is a root of unity, for every prime factor
I; of 2. A necessary and sufficient condition for the statement to hold
is that Q(+~/—m ), contains at least one of the three numbers +/—1, +/2,
v/—2, for every l; ; namely @, contains at least one of the three numbers
Vm, ~/=2m, ~/2m, that is m=1 (mod 8) when m is odd or m/2==+1
(mod 8) when m is even.

4) See §4 for the definition of a strongly radical field.
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From this proposition, Q(~/—m) (m+1, 2) with the class number 1
or 2 are not strongly radical. Furthermore the following proposition
holds. : ’

PROPOSITION 2. Q(+/—m ) with the class number odd is not strongly
radical. '

PROOF. This follows from Proposition 1 and the next two lemmas.

LEMMA 1. Let h be the class number of Q(~/—m) and r the number
of prime factors of m. Then 27! divides h.

LEMMA 2. Let p be a prime number éuch that p=1 (mod 4) and h
the class number of Q(+/—p). Then h is even.

These two lemmas immediately follow from the genus theorem : the
number of genus in the narrow sense of a quadratic field is 2¢-!, where
t is the number of prime factors of the discriminant of the field. (cf.
[3] appendix (1)).

§5. Infinite Ulm invariants v.. .

For all imaginary quadratic fields with the class number 1, B®=
B for all I and v, by the definition of B*’ and BY’. Then [’~*=[>=]",
This leads to v..,=0 for all [ and v.

Now we discuss imaginary quadratic fields k=Q(+~/—m ) with the
class number prime, say, ¢. Let a be a non-principal ideal of k. There
exists a=k such that a?=(a), where («) is the principal ideal generated
by a.

(i) In case l=q.

B®={gek*; (B) is ¢"-th power of an ideal of k}.

If =B, v=+0, (8) is the form (7)¥ or a?(y)? or .-+ or a® P%(y)¥, where
rek*, namely (7)? or (@)” () or --- or (a)?"?"7(y)*". Since the units
of k=Q(~/—m) (m+#1,3) are 1, we have

BP={47%, +a® 7y o | £V pe X} (v+0),
BY={Be B ; pewk?, for every prime factor I of q}.
Now we consider two types, type A and type B, for k=Q(~/—m).
type A: Thefré exists a prime factor | of q éuch that aeio ki

We have in this case
BY={xy*; rek*}.
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Since {1, a®’, «-+, a%"P?7"} is a complete set of representatives of the
cosets of B modulo BY’, we have

(B(u) B(”)) q (v# 0).'

Therefore
Deo,y y' (u-—l) (v 1) w+) . P+1) )
¢ =r=q (B (B(v) )(g(u))z : B¥"7) =q¥=¢'=1 (v=2,38, )
s, (B : BOYB®: B(z)) l-q
g =q" (B®: BYYy qz =1.
So we have

Voo, =0 (v=1, 2, --9).
type B: acswiki? for all prime factors | of q.
Since BY’=B®", we have (B®: B’)=1. Therefore ¢"~*=¢"; v.,,=D.,.

So we have
1 (v=1)
V., =
0 (v=2, 3, +-9).
(ii) In case l#q.
B¥={Bek*; (B) is the I"-th power of an ideal of k}

={fek*; (B) is the form (y)"" or a*(y)* or
-« or a“P¥(y)”, where yek*}.
Since a*’ (s=1,2,---,q—1) cannot be a principal ideal in %k, we have
BU=(Bk*; (B=()", r<k*)
={2"; rek)
=BY.
Then (B* : BY)=1. Therefore I’*=["’=I". Then we have
Veo,, =0 (v=1, 2, :-9).
Thus we obtained the following theorem.
THEOREM 1. Let k=Q(~/—m) be an imaginary quadratic field with
the class number q (a prime), a a non-principal ideal and « an element
of k* such that a?=(a). Then k is said to belong to type A if there exists

an ideal | which is a prime factor of q, such that a&wki?. Otherwise,
k is said to belong to type B,. Then the infinite Ulm invariants are

Vo= 0 (for all 1 and v) if k belongs to type A.
[uw,y:: 1 (I=q, v=1)

[0 (I=q, v=2, 3, -+*) if k belongs to type B,.
Lw,u: 0 (+#gq, v=1,2, --)
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As to Q(+/—m) (m+#1) with the class number 1, we shall agree that
these fields belong to type A. Then putting together the results of §3
and the theorem and taking into account the above agreement, we obtain
the following.

THEOREM 2. Gal(AJk) and Gal(A,[k') are isomorphic, if and only
of k and k' belong to the same type.

For example, k=Q(v/—2), k' =Q(+/—5).

type B2

type Bg

type B;

type B;

class
number

Q(+/—413)
Q(v/ =)

Q(+/—83),
Q(+/=139),
Q(+/—28),
Q(+/=300),
Q(+/—319),
Q=)

Q(~/=100),
Q(v/=%1)

AE
—1 ,
Q(+/=127),
Q(+/=T31),
Q(+/=119),
- Q(v/—m)

Q(+/—341),
Q(v/—43)

(2]

Q(+/=71),
Q(+/—T151),
Q(4/=051),
Q(+/—463),
Q(+/—1487)
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Now we classify in the table below the imaginary quadratic fields
Q(~=m) (m<500) with the class number 1, 2, 8, 5 and 7 according to
their types. Q(+~/—1) belongs to an exceptional type (cf. § 3).

We can read in the table that even if Gal(A k) and Gal(Ay/k') are
isomorphic, the ideal class groups of k and k' are mot mecessarily iso-
morphic. For example the Galois groups Gal(A,/k) are isomorphic for
k=Q(v—2), +=5), Q(+/—23), Q+v—4T7) and Q(+~/—71), but the ideal

class groups of them are not isomorphic.
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