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Introduction

In their paper [1], Goldstein and Ryan formulated the theory of
infinitesimal rigidity for submanifolds, and then specialized to the
case where the ambient space has constant curvature to obtain some
interesting results concerning infinitesimal rigidity of spheres. The
notion of infinitesimal rigidity occurs in connection with the deforma-
tion of submanifolds. Let 7 be a Riemannian manifold with metric
g and M a manifold. If v, be a deformation of an immersion
Yo: M— M, a vector field z=(d7,/dt),—, on V(M) is associated to 7,
naturally. When the family of induced metrics g,=7F9 on M satisfies
(dg./dt).—,=0, v, is called infinitesimal isometric. In this case with
codimension 1 the corresponding z satisfies a nice equation ((2) in §2),
which enables us to make use of Yano-Bochner’s technics [2]. Espe-
cially we get Theorem 4 as a replica of the famous following theorem
due to Yano: In a compact orientable Riemannian manifold, an
infinitesimal affine transformation s necessarily an isometry.

In this paper, all manifolds, tensors and maps are assumed to
be C=. All manifolds are assumed connected. I7** is an n+1 dimen-
sional Riemannian manifold with positive definite metric §=(§;.). M~
is an » dimensional manifold. A submanifold S=(M", r) in M=+
consists of M and an immersion 7: M"— . If M" is compact
orientable, we shall say that S is compact orientable. The ranges
of indices are as follows:

a, B, N I, cee=1, -0, m+1,
a,,b’ cee, 1, 8, cee=1, e, M

§1. Preliminaries

Consider a submanifold S=(M", ) in M. For simplicity, we
shall identify »(M") with M* locally. Let a*=x*(u*) be the local
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expression of M™ in M"*' in terms of local coordinates {u} of M™ and
{x’} of M"*'. The induced metric g=r*§=(g,,) on M" is given by

9::BiB{ =04 »
where we have put

oxt
B}= .
ou®

Let N=(N*) be a unit normal vector (local) field and N,=g,.N*
be its covariant components. Denoting by (9**) the inverse of (g.s)
and putting

Bza:gubBIflgm ’
B:BY=a¢! , N*N,=1,
B!N,=0, N*’B#=0,

viz. the metrix (Bf, N,) is the inverse of the matrix (B}, N*). Hence,
B!Bi=0.—N*N, are valid. If we put B“*=¢*B{ and B,,=§,.B&, the
following relations hold good:

B‘”Bbz:@‘; ’ BEINI—_—‘O ) ete.

Let 7 and 7 be the Riemannian connections with respect to § and
g respectively. 7 operates not only on the quantities in M™ but the
ones defined along M*, [3]. For example, it is well known that
(i) for g along M", we have

o (). ().
VagM:%—Ba{M}gw—Ba{W}gh

:B;ﬁvgli‘:o ’

(ii) for a vector field %* defined in a neighbourhood of M" in
M, we have

~

2 N ~

(iii) for B}, we have

V,,B,,‘:E-I—B,f[ A }B;—{ ¢ }Bng,,B; .
ou* ©y ab

The Euler-Schouten tensor H,,* of M* is defined by H,*=V,B}.
As we have
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Vagbc:_O:Va(g'FuBlf'B:):'gﬂu(HabﬂB:+B#Hacv)
':Hab#Bc,u_}_Hac#Bb# ’

H,,*B,, is skew-symmetric with respect to b and ¢. On the other hand,
it being symmetric with respect to ¢ and b, we have H,;*B,.=0 and
H,* can be written in the form

p 2
H,'=h,iN*.

h. is called the second fundamental tensor of M™. It is easy to see
that the following equation holds:

V .lN*=—hiB}.

§ 2. Infinitesimal affine deformation

_ Consider a submanifold S=(M", r) in M. Let I=(—¢, ¢) for
some €>0. A map

v: IXM™— I+, (&, u)—7(u) ,

is called a deformation of S if 7,=» and 7, is an immersion for each

tel
For each ¢, the induced metric on M" will be denoted by g(¢)=

v¥g and its Riemannian connection by 7(¢).

DEFINITION. A deformation ¥ is called
(i) affine, of V(£)=V(0) for tecl,
(ii) infinitesimal affine, ¢f V'(0)=0,
(iii) zsometric, if g(t)=g9(0) for tel,
(iv) nfinitesimal isometric, if ¢'(0)=0,
where dash means the differentiation with respect to t.

It is evident that an (infinitesimal) isometric deformation is
(infinitesimal) affine.

For each ue M", let z,, be the tangent vector to the curve t—
Y(u) at ¢, viz. z,,=0av,(u)/ot. For simplicity, we shall denote z,,, by
z at t, and z,, by z.

In the rest of this section we find the condition for 7 in order
to be infinitesimal affine or isometric in terms of z.

We shall use the same notations as in §1 for »(M")=M" (local
identification) and for 7,(M™) the corresponding notations with at ¢.

First we have
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0 0 /o~

— Qs =—(§,.BlB{

atgb at(guz £)
— yagly BZB'u ~ <azz J3 B)azﬂ>

i R S

=Bb17¢,z1+Ba,,Vbz" at t,

0 gov— _ geogre 0.

atg g-g atgce

=—(Bf''z*+B}V°z*) at t,

where g and 7/ mean (of course) g(¢) and F(t), ete.
For each ¢, let

2'= B} + N at ¢

be the decomposition of z at ¢ into the tangential and the normal
components. Then, as we have

V2t =BV £ —phi)+ (hool® +V o p)N* at t,
the following equation holds good :
(1) %gub:VaEb'{"nga—z'\b‘hab at ¢ .

Consequently we have

THEOREM 1. (Goldstein-Ryan). Let 7 be a deformation of a sub-
manifold S=(M" r) in M. In order that v be infinitesimal

1sometric, it is mecessary and sufficient that 2= BX&*+yN* on r(M™)
satisfies

BMV,LZZ +BalVsz = 0 ’
or equivalently

(2) Vafb—i‘VbEa:z”\/fhab .

REMARK. As is seen in [1], we know from (2) that the domain
where &=0 but 40 is totally geodesic.
Now we put

Abc=Vb§c+Vch'—2’\b‘hbc at t

for a deformation 7. By (1) and a computation we can get

ot lbe) 2
=Vch$a+Reboaée_Vb("ﬁl"k’(:)—Vc(/‘lph‘g)_l_ya(q/rhbc) at t ’

a
a { } :_1_gae(VbA09+VcAbe—VeAbc)
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where R,,,” is the curvature tensor of g(¢).
Thus we get

THEOREM 2. In order that a deformation 7 of S=M", r) in
M+ be infinitesimal affine, it is necessary and sufficient that z*=
B+ N* on r(M™) satisfies

Vi &%+ Boppo " =V o(rhe) +V (h§) =V “(phy.)

REMARK. A deformation 7 is called infinitesimal volume-preserv-
ing, if
(V'det (9a(2)))i==0 .

The condition in terms of z is B{/ ,2*=0 on »(M"), which is equivalent
to V.,£%=+rh, where we have put

h=h; .

§ 3. Non-existence of isometric deformation

We assume that M **' is orientable, and consider a deformation
v of a compact orientable submanifold S=(M", ). Then, by the local
identification we can associate to z*=B2&*+4N?* on »(M") the pair
(&, ¥) which consists of a vector field £=(£*) and a function +, defined
globally on M". If we take account of Theorem 1, 2 and Remark,
the pair (& ) in the following definition would be worthy to be
studied.

DEFINITION. Let S=(M™", r) be a compact orientable submanifold
in an orientable Riemannian manifold M. By a deformation
vector we mean (&, ) which is a pair of a wvector field & and a func-
tion + on M". A deformation vector (&, «) 18 called

(i) isometric, of it satisfies

( 3 ) Vasb+Vb§a:2"/fhub ’
(ii) affine, if it satisfies
(4) Vol &%+ Bayo&" =V y(vh?) +V (yh3) =V *(Vhy.)

(iii) wvolume-preserving, if it satisfies
(5) Vie=qah ,

with respect to the induced metric g=r*§ and a fixed unit normal
vector field on r(M™), where we regard h,, as a tensor field on M*
through the local identification of r(M™) with M™.
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It is easy to see that an isometric deformation vector is neces-
sarily affine and volume-preserving.
Now we shall prove the following

THEOREM 3. Let S=(M™", r) be a compact orientable submanifold
in an orientable Riemannian manifold M~ If S satisfies

(i) h*—2hg,h**>0,

(ii) the Ricci form is megative definite
with respect to the induced metric, then there does mot exist an
wsometric deformation vector except the zero.

Proor. Let (& 4) be an isometric deformation vector. It satisfies
(3), (4) and (5). From (3) we have

( 6 ) . habVasb____ ’\,b‘habhab
and from (4)
(7) 7 78Ee + R&S =275 (yph2) — (k)

where R,.=R,,.° denotes the Ricci tensor. By (7) we have

—;-V"V,,(E.,s“)=é,,t7"t7b5“+7,,sa7'>s“

= "RabEGEb+zfaVb(",l’hZ)”‘ana("//‘h)‘l‘VbSabea

and by integration with respect to the volume element do
(8) | Rugrgdo=| @e7,(wht)—eT.(ph)+7 8 E o

On the other hand, if we take account of (6) and (5), it follows
that

S £ (yhl)do = _g PR 2ol = —S v hah?do
M M M
S £ (yh)do= —-S PV £odo = —S v hdo .
M M M
Substituting these equations into (8) we obtain
|, Bag'do=| (i h—2hah)+7e0 e} o
M M
and hence complete the proof, taking account of the assumptions.

COROLLARY. Under the assumptions in Theorem 3, there does
not exist an isometric deformation of S other than the identity.
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§ 4. Isometric deformation vector

As in §3, let us suppose that S=(M", r) is a compact orientable
submanifold in an orientable Riemannian manifold M"*.,
We consider an affine deformation vector (&, 4). It satisfies

VchEa+RebcaEe=Vb('\l/‘h’ca)—]—Vc("//\hba)—"ya("lfhbc) ’

and we can get the following three equations:

( 9 ) VbeEa,—l_ReaEe=2Vb("nb‘hba)~—ya("l"h) ’
(10) V.E*=+h+C, C: const. ,
(11) hme(VcSa, - "l’\hca) =0.

Now we need the following

DEFINITION. A deformation wector (&, 4) is called mormal (or
tangential), if & (or +) vanishes identically.

First we shall prove the following

THEOREM 4. Let S=(M", r) be a compact orientable submanifold
in an orientable Riemannian manifold M. Let us assume that
r(M™) has the parallel second fundamental tensor and is not minimal,
or equivalently

Vah’bc:O (M’Ld h?f() .

Then 1f M™ admits a non-normal affine deformation vector, it also

admits an isometric deformation vector which is different from the
zero.

PrOOF. Let (¢, ) be a non-normal affine deformation vector.
It satisfies (9), (10) and (11). First we have

(12) he(V E,—h,,)=C, (const.)
by virtue of (11) and /,h,,=0. Next, let us define f by
(13) hf=V.&*,

then it follows from (10) that
—r-C
"lf"‘f h ’

and we have from (9) and (12)
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(14) VPViat Byol® =2f,hE—foh
(15) e V,.&o—fh,,)=C, (const.),

where f,=V,f.
Now we put

(16) Aab=7a5b+7b§a—2fh’ab ’

where f is the one given by (13). Then, taking account of (13), (14)
and (15) we have

(17) ” Aab HZ:AabAab:2Aabl7a§b_.'4fhab(7a§b —fhub)
:2Aab‘7a‘§b_4c2f’
(18) VaAabzVaVaEb+Rba5a_2fahab+7b7a§a:0 .

If we substitue these equations into
(19) Va(AabEb):VaAabEb+Aubl7a§b

and integrate over M*, it follows that || A,; |[*=0 and (&, f) is isometric.
If (& f)=(0, 0), then (& 4) is normal, which contradicts the assump-
tion.

From the above proof we have

COROLLARY. Under the assumption in Theorem 4, if (& ) is o
volume-preserving affine deformation vector, then it s isometric.

Next we shall consider a case of h=0.

THEOREM 5. Let S=(M", r) be a compact orientable submanifold
in an orientable Riemannian manifold M*". Let us assume that
r(M™) has the parallel second fundamental tensor and is minimal
but not totally geodesic, or equivalently

V=0, h=0 and h*"h,+0.

Then, +f M i admits a non-normal affine deformation vyectooﬂ, 1t also
admits an tsometric deformation vector which is different from the
zero.

Proor. This case, let us define f by
(20) he*(V o—fh,)=0 .

Then we have

G

P=r— T
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by virtue of (12), and from (9) and ~=0 it follows
VbeSa—I_Rbaéb:szhg .

As in the proof of Theorem 4, let us define A,, by (16) with f of (20).
Then we obtain

H Aab I]2=2Aab7a5b ’
VaAab = aVaEb+Rba$b '—Zfaha,b

taking account of (17), (18) and (10). Thus we can complete the proof
making use of (19).

REMARK. After formulating this paper, I was informed from
Prof. K. Yano that he had made a similar work [4]. Then a co-
operated work [5] was done about complex hypersurfaces in Kahlerian
manifolds.
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