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1. Introduction

The problem of classification of all simple groups whose order is
divisible by exactly three primes, is the well-known open question in
group theory.

The only known simple groups with this property are PSL(2, q),
q=5,7,8,9 and 17, PSL(3, 3), U(3, 3) and Q(5, 3).

J. Thompson’s classification [7] of minimal simple groups shows
~ the following result; If the order of a non-solvable finite group is
divisible by three primes only, then the primes are 2, 3, and p, where
p belongs to the set {5, 7, 13, 17}.

There has been the conjecture that every simple group has a
cyclic Sylow subgroup.

We note here some known results on a simple group G of order
2°3'p° with a cyclic Sylow subgroup S.

R. Brauer [1] proved that the cyclic Sylow subgroup is self-
centralizing. The Burnside’s theorem implies that [N (S): Cx«(S)]=~1.
M. Herzog proved in [3] that if [Ng(S): Cx«(S)]=2, then G is isomor-
phic to one of the groups; PSL(2, q), ¢=5,17,8,9, and 17.

The classification of simple groups of order 2°3*p is completely
known. (cf. [1], [8], [9] and [10]). Using this result, J. Leon [6]
showed that a simple group of order 2°3°5° which contains a cyclic
Sylow subgroup is isomorphic to PSL(2, 5).

In this paper, we prove the following theorem.

THEOREM.

Let G be a simple group of order 2°3°p°, where p is a prime.
If G has a cyclic Sylow subgroup S such that [Ng(S): C4«(S)]=38, then
G is isomorphic to PSL(2, 7) or U(3, 3).

In order to prove the Theorem, we solve in Section 4 the degree
equations for the principal block, applying the results of M. Herzog
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[6] which relies on the paper of E.C. Dade [2] on blocks with cyclic
defect groups.

In Section 2, we derive the preliminary results. In Section 3,
we prove the Theorem assuming the Lemma 1. In Section 4, we
complete the proof by solving the degree equations (Lemma 1).

2. Preliminary results

G will denote a simple group of order 2°3°p° containing a cyclic
Sylow subgroup S such that [N4(S): Cs«(S)]=38. Since S is cyelic,
[Na(S): Ci(S)] is relatively prime to the order of S. Hence S cannot
be a Sylow 3-subgroup.

As mentioned in Section 1, the cyclic Sylow subgroup is self-
centralizing. It is clear that the Sylow 2-subgroup cannot be cyclic
from the Burnside’s theorem on normal complements. Hence S is a
Sylow p-subgroup P. N4 P)/CxP) is isomorphic to a p’-subgroup of
Aut (P) of order p**(p—1) so that the order of N4 P)/C4«P) divides
p—1. Therefore p=7 or 13.

3. Proof of Theorem

E. C. Dade [2] described the characters in blocks with a cyelic
defect group. Using Dade’s result, Herzog [4] obtained the following
description of the principal p-block of G. We note here the relevant
results in [5, Prop. 1].

Let G be a finite group with a cyclic Sylow p-subgroup P of
order p°, ¢=[NyP):CyP)] and B is the principal p-block of G. Then
the following holds;

(1) B contains ¢+ (p°—1)/q ordinary irreducible characters divid-

ed into two families:
the exceptional characters: {X,: ve€ 4} and
the non-exceptional characters: {X;::1=1, ---, q}.
(2) fi=X,Q)=—qe,(mod p°) for ne4 and
fi=X,(1)=¢, (mod p°) for 7=1, ---, q,
where ¢;=*1 for 7=0,1, ---, q.
q

(3) ,ZS &;fi=0

In our situation, the principal p-block contains 8+ (p°—1)/3 ordinary
irreducible characters.

The characters in the first family are (p°—1)/3 characters
{X;: ne 4}, all of the same degree. The characters in the second
_ family are 3 ordinary irreducible characters X, (the identity char-

acter), X; and X,. Let f; denote the degree of X,, for ¢=2,3 and
fo denote the common degree of X,.
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It follows from Herzog’s results that;

fi=¢e, (mod p°) for 7=2,3 and
fo=—38¢,(mod p°), where ¢, &, e;=+1.
1+efitefotef,=0.

The f; are not divisible by p; hence we may write f, as 2%3%
for ©=2, 3, 0, where the s, and ¢, are non-negative integers.
In both cases (p=T7 and p=18), we obtain the following :

LEmMmA 1.
If ¢=2, the equations

14 €,2°23%2 4 g,2°33% + ¢, 27030 = ()
g, ==x1, 2%8'=¢,; (mod p°) for ©1=2, 3
g,=+1, 2°3%= —3¢, (mod p°)

have no solution other than the following one in either case, p=7 or
p=13;

g,2%23"2=¢,2%3% =1, ¢2°3%=—3.

The proof of this lemma will be given in Section 4. The Lemma
implies that G has a non-identity character X of degree 1 and hence
the kernel of X contains G'=G (because of the simplicity of G). This
is a contradiction. Hence we shall have the following :

If G is a simple group of order 2°3°p° containing a cyclic Sylow
p-subgroup P such that [Ny P): CiP)]=38, then c¢=1.

Taking into account of this restriction on the order of G and
using the results of [8] and [9], we can determine the type of G of
order 2°3'p°. _

If p°=7, we have the following possibilities : PSL(2, 7) of order
28.3.7, PSL(2, 8) of order 2°-3*-7 and U(3, 3) of order 2°-3°.7.

Since P is self-centralizing and [N4(P): Cy«(P)]=3, the number of
Sylow 7-subgroup of G is [G : Ny(P)]=2%-3""", which must be congruent
to 1 modulo 7. This eliminates PSL(2, 8).

The other two cases satisfy the condition that [Ny (P): C«(P)]=3.
So G is isomorphic to PSL(2,7) or U(3, 3).

If p°=13, we have the only one possibility ; PSL(3, 3) of order
2¢.3%.13. In this case, the centralizer of a Sylow 13-subgroup has
index 12 in its normalizer (by D. Wales [9]). This case is eliminated.
Hence we obtain the Theorem.

4. Solving the degree equations

We discuss the proof of the Lemma 1 in this section. As it is
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impossible to write down the whole of actual calculations in the
limited space, so an outline of the procedure will be given.

In the equation 1--¢,2°23%24-¢,2%3%-+¢,2°08%=0, there must be some
integers 7 and j (¢#J) such that 2%3% is odd and 2°/3% is relatively
prime to 3; so that s,=0 and ¢;=0. (Because if 7=y, then 2%8%=
2°.8°=1; hence ¢;=1. So there must be some integer k(si=7) such
that 2°#3' is relatively prime to 3, that is, ¢{,=0. Thus, without loss
of generality, 1#jJ.)

We treat separately two cases: Case A(p=T) and Case B(p=13).
In both cases, it follows from our assumptions that one of the follow-
ing cases holds;

) 1+e,2724¢,3%+¢2708%0=0, 22=¢,, 3B=g¢,, 23"= —3¢, (mod p°),

c=2

(A1) 1+e,2%2+6,2%38+¢300=0, 22=¢,, 2%3%=¢,, 3= —3¢,(mod p°),
_ c=2

(II) 1+¢,3%4¢,2%8B+¢,2%0=0, 32=¢, 233B=g¢,, 2= —3¢,(mod p°),
c=2

We show here the procedure in Case A-(I). The other cases can

be treated similarly.
Case A-(I) we solve the equation

1+e2%2+¢,3%+¢2%3%0=0 (Eq. (I))

with conditions 2%=¢,, 33=¢,, 2°8'= —8¢,(mod p°) c=2.

The procedure for solving the equation divides into the following
steps.

Step. 1. The ¢, ¢, and ¢, take on the value —1 or +1, but not
all ¢; can be equal. We have ¢,= +1 because 22 —1 (mod 7). Hence
there are three possible cases corresponding to different values for
&, &, and &. Since the exponents of 2 and 3 modulo 7 are 3 and 6,
s, is computed modulo 8 and ¢, is computed modulo 6. KEach case is

Table A-(I)

& €3 &0 So fs So to
(1) 1 1 —1 0 0 0 1
(2) 1 -1 0 0 1 5
(8) 1 1 —1 0 0 2 3
(4) 1 -1 1 0 3 0 4
(5) 1 —1 1 0 3 1 2
(6) 1 -1 1 0 3 2 0
(7) 1 -1 —1 0 3 0 1
(8) 1 -1 -1 0 3 1 5
(9) 1 —1 —1 0 3 2 3
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subdivided into three subcases according to the values of s, modulo
3. The ¢, is then computed modulo 6 from the condition 2%8%=
—3¢,(mod 7). Thus finally we have nine different cases, correspond-
ing to different values for the ¢;,, the s, modulo 8 and the ¢, modulo
6. Let the 3, denote the values of the s, modulo 3 and the %, denote
the values of the ¢, modulo 6. Table A-(I) gives these nine cases.

Step 2. Some cases of Table A-(I) can be eliminated by finding
the cases in which the Eq. (I) is satisfied together with the above
conditions. In Case (1), if t,=0, then s, ¢, and s, are determined
absolutely ; s,=0, ¢{,=1 and s,=0. This is clearly one of the solutions
of the Eq. (I). If ¢,#0, s,=1 and hence Case (8) is eliminated.

In the similar manner, it is not difficult to know that (4), (6), (7)
and (9) can be eliminated. The remaining cases are (2), (5) and (8).

Step 3. In this step, we show that none of these three cases
can be solutions of the Eq. (I). Here we use congruences modulo 73
to determine the possible values of the s; and ¢, modulo higher powers
of 2 and 3. The exponents of 2 and 8 modulo 73 are 9 and 12. Then
the left side of the Eq. (I) can be computed from the values of ¢,

Table A-(IT)

&9 €3 €0 5‘2 §3 i:s io
(1) 1 1 -1 0 0 0 1
(2) 1 1 -1 0 1 4 1
(3) 1 1 -1 0 2 2 1
(4) 1 -1 1 0 0 3 4
(5) 1 -1 1 0 1 1 4
(6) 1 -1 1 0 2 5 4
(7) 1 —1 -1 0 0 3 1
(8) 1 -1 -1 0 1 1 1
(9) 1 —1 —1 0 2 5 1

Table A-(III)

€ €3 €0 . Ss fs So
(1) 1 —1 1 0 0 3 2
(2) 1 -1 1 0 1 1 2
(38) 1 —1 1 0 2 5 2
(4) -1 1 1 3 0 0 2
(5) -1 1 1 3 1 4 2
(6) -1 1 1 3 2 2 2
(7) -1 -1 1 -3 0 3 2
(8) -1 -1 1 3 1 1 2
(9) —1 —1 1 3 2 5 2
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and the values of the s, modulo 9 and the ¢, modulo 12. In Case (2)
we determine s, modulo 9 and ¢, modulo 12. Then we know that
8,=0 or 8 or 6 (mod 9), ;=0 or 6, t,=5 or 11 (mod 12) and s,=1. There
are 12 possibilities, according to the values of s, ¢, and ¢,. In each
case, we compute the left side of the Eq. (I) modulo 73 and discard

Table B-(I)
€2 €3 €0 S s So o
(1) 1 -1 0 0 4 0
(2) 1 1 —1 0 0 0 1
(8) 1 1 -1 0 0 8 2
(4) —1 1 1 6 0 10 0
(5) —1 1 1 6 0 6 1
(6) —1 1 1 6 0 2 2
(7) —1 1 -1 6 0 4 0
(8) -1 1 —1 6 0 0 1
(9) -1 1 —1 6 0 8 2
Table B-(II)
) &3 €0 $e §s s fo
(1) 1 —1 -1 0 6 0 1
(2) 1 -1 -1 0 2 1 1
(3) 1 -1 —1 0 10 2 1
(4) —1 1 —1 6 0 0 1
(5) -1 1 —1 6 8 1 1
(6) -1 1 —1 6 4 2 1
(7) 1 1 -1 0 0 0 1
(8) 1 —1 0 8 1 1
(9) 1 1 —1 0 4 2 1
Table B-(III)
&2 €3 =) fz §3 fs 50
(1) 1 1 —1 0 0 0 4
(2) 1 1 -1 0 8 1 4
(38) 1 1 —1 0 4 2 4
(4) 1 -1 1 0 6 0 10
(5) 1 -1 1 0 2 1 10
(6) 1 —1 1 0 10 2 10
(7) 1 —1 —1 0 6 0 4
(8) 1 -1 —1 0 2 1 4
(9) 1 -1 —1 0 10 2 4
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all the cases for which we obtain a non-zero guantity modulo 73.
There is no case in which the left side of the Eq. (I) is zero modulo
73. So (2) is discarded.

In Case (5), s,=0 or 3 or 6 (mod9), t,=3 or 9, £,=2 or 8 (mod 12)
and s,=1. Except the following; s,=0(mod?9), t,=3, t,=2 (mod 12)
and s,=1, there is no case in which the left side of the Eq. (I) is
zero modulo 73. For this remaining case, we check the conditions
that these ¢,, s;, and ¢; can satisfy the Eq. (I) with the above condi-
tions. We find easily that s, is determined absolutely: s,=8. On the
other hand, 2%2=1(mod 7®) because 2%=1(mod 7°) ¢=2. Since the
exponent of 2 modulo 7% is 21 and s,>0, s,=21, which is a contradic-
tion. Thus (5) is discarded. In Case (8), 5,=0 or 3 or 6(mod?9),
=3 or 9, t,=5 or 11 (mod 12) and s,=1. The remaining case is the
following : s,=0 (mod 9), ¢,=38, {,=5 (mod 12) and s,=1. On the other
hand, 3= —1 (mod 7%) because 3%=—1(mod 7°) ¢=2. Since the ex-
ponent of 3 modulo 7* is 42, 3"=—1(mod 7%). Hence ¢,=0 (mod 21)
and ¢, is odd.

Considering all these conditions we know that we have no solu-
tion in the remaining case. Hence (8) is discarded.

From the result of this procedure, the Eq. (I) with above condi-
tions has only one solution: &,2°2=¢,3*=1 and ¢2°38%= —3.

We have shown here the procedure of solving the equation in
Case A-(I). We can deal with both cases A-(II) and A-(III) similarly
as in Case A-(I). The result is that the Eq. (II) has the only one
solution (&,2°2=¢,2%3%=1 and ¢,3"=—3) and the Eq. (III) has no
solution. Thus in Case A, the Lemma is proved.

Proceeding similarly, the Lemma can be proved in Case B, where
the s, is computed modulo 12 and ¢, is computed modulo 3 because
the exponents of 2 and 3 modulo 13 are 12 and 3.
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