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The p-wave pion-nucleon scattering phase-shifts are computed by
the Chew-Low static model for pion incident energy of 0-300 MeV.
The square of the unrenormalized coupling constant is taken to be
f?=0.2, and the cutoff is made at kn..=6 ¢. The computed 38, 3 phase-
shift passes through 90° about at the right energy. The other phase-
shifts computed are small in rough agreement with experiment.

1. Introduction

In 1956 Chew and Low"? developed a static model of pion-nucleon
interaction, and by the analysis of the pion-nucleon scattering and
photopion production data they determined the coupling constant and
the cutoff parameter. Their method was to derive some interrelations
between the scattering and production amplitudes and the cross sec-
tions and to compare them with experiment.

The numerical calculations of the pion-nucleon scattering in the
static model have also been carried out by several workers.>”® The
calculations of the p-wave phase-shifts by Chew® and by Salzman and
Snyder® are based on the perturbation expansion of the transition
matrix. The applicability of the perturbation method, however, is not
free from a question because the coupling constant is not small. G.
Salzman and F. Salzman® solved the Low equation for the pion-nucleon
scattering in the one-pion approximation. The Low equation involves
the cross sections at all energies, and since the pion production is not
negligible at higher energies, the one-pion approximation may not be
quite legitimate.

In view of the above situation, it appears to be worthwhile to
calculate the pion-nucleon phase-shifts in the static model by the
Tamm-Dancoff method.®” This is undertaken in the present paper.

2. Chew-Low model

The Chew-Low static model of pion-nucleon interaction is based
on the Hamiltonian®

*) We use units #=1, ¢=1.
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H:H0+Hly (1)

where H=3 o,ala,, (2)

szkz (Via,+Vial), _ (3)

and 0, = p2+k, (4)
— . k

V.,=N+/4x —iiz',z zk-a—jv%. (5)

H, is the kinetic energy plus the rest energy of the pions and H;
is the interaction term. a, and a} are the annihilation and creation
operators of the pion. k=k, 2 designates the momentum k and the
isospin state 2 of the pion. ¢ and z; are the spin and isospin operators
of the nucleon. The nucleon is treated as a fixed source. f is the
dimensionless coupling constant. g is the pion mass. v(k) is the cutoff

-1
function, and N=(quantization volume) 2
The pion-nucleon scattering is described by the state vector

| pat+>=a}|a>+X, (6)
where X=(E,+ip—H)* V,|a), (7)
and E,=vw,tE;. )]

|a> is the real nucleon state and E, is the energy of this state. 7
is an infinitesimal positive quantity. a}|a«)> in (6) is the incident
wave part and X is the scattered wave part.

We have to solve the equation

(Bp+ip—H)X=V,a> ©)

for X. For this purpose we expand X in a complete set of state
vectors. An obviously complete set is |f), allp), alallpB),:, where
| B) is the bare nucleon state. This set is inconvenient for our purpose,
because it has no particular relation to the real nucleon state. Amnother
set 18>, all B>, alal|B), - appears to be attractive, but whether this
set is complete or not is not known. As a compromise, we adopt here
the complete set [B), allB>, alal|p), alalallp), .

3. Spherical wave representation

According to (3) and (5) the nucleon interacts only with p-wave
pions, so that it is convenient to employ the spherical wave repre-
sentation. Actually we need only the p-wave part of H,, Omitting
the other parts we can write the Hamiltonian as

H= 3 [k [0 al; (k) auk)+ V(k) o0 72 { @) +alik) }] (10)
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S ko(k)
where : V(k)Z—#—m . (11)
a;(k) and ai(k) are the annihilation and creation operators of the
p-wave pion. £k is the magnitude of the momentum. ¢ 1 are the
angular momentum and isospin indices, each of which takes on three
values z,y,2. Concerning the interaction term, the above transforma-
tion—the transformation from the plane wave representation to the
spherical wave representation—is achieved by

1
S — g N e dk e, (12)

- 3
ferkay:d0——i\J2E (20)* Nau(h), (13)

where £ is the solid angle spanned by the direction of k, and e; is
the unit vector along the axis 4.

4. Nucleon greund state

Before proceeding to the problem of pion-nucleon scattering, a
brief explanation is to be given concerning the nucleon ground state,
1. e., the real nucleon state. The nucleon ground state has been in-
vestigated by several authors®'® Although the exact solution is not
obtainable in a closed form, rather good approximations have been
devised. In the present paper we use the approximate solution given
by the present author in a previous paper.” In this approximation
method, we first introduce the reduced Hamiltonian H, which is
defined by

H=0] T ab aut VT (A+4n], (14)

where 2= | fUk) ausle) de (15)
Azg_% 0i T2 Gz, (16)

2= w, f¥k) dk, (17)

VT =05 [ V) f(k) ke, (18)

and f(k) is a real function normalized according to
{ k) dle=1. 19)

Instead of directly handling H the minimization of the expectation
value of H, is tried, regarding f(k) as a variational function. A good

approximation to the nucleon ground state wvector has thus been
obtained in the form
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la>=(b,—b A"+b, A" — -+ )| a), (20)
f(k)=const. Xk v(k) , (21)

where b, b, b, -+ are constants. In the present paper the rather simple
form

|a>=(by—b A"™+b, A") | ) (22)

is adopted, because wc can not expect a very accurate prediction by
the present simple model in any case. As in the previous paper the
unrenormalized coupling constant is fixed at f2=0.2, and the cutoff is

made at kn.x=6 4 The optimum values of b, b, and b, are b,=0.685,
b;=0.218, b,=0.034.%

5. Pion-nucleon scz}_ttering

In Sec. 2 we have briefly described the theory of pion-nucleon
scattering using the plane wave representation. Now we consider
the same problem in the spherical wave representation. We need to

consider only the p-wave scattering. This is described by the state
vector

¢=ai(p) [a>+X, (23)

where the first term al;(p) | @) represents the incident wave and the
second term X represents the scattered wave. The scattered wave
amplitude X is to be determined by solving the equation

(E,+ip—H)X=V(p)oizla>. (24)

In the present representation the statement made at the end of Sec.
2 means that X is expanded in |8>, al9) ]8>, aj.q)al.("]B), al.lq)
al(r) al.(s) | B), -~

We now show that in a certain approximation X can be expressed
as a linear combination of

¢1=] ,3> y
$:={dq —w;_l_ii(g)—_—@ w87,
(25)
$p=aj.al,[B),
$=al,al,alB),
where f(g) is the function defined by (21) and (19), and aj, is the

operator defined by (15). First, we consider the operation of (E,+1y

—H) on ¢, and ¢, Since |8) is the eigenvector of H with the eigen-
value E;, we have

*) The bs are related to the cys of ref. 10 by b;=(—-1)¢c;/ ¥/Nj.



Dec. 1975 Static Model Calculation of-Pion-Nucleon Scattering 67

(E,+ip—H) ¢=0,|8, (26)
(E,+ip—H) ¢;=a%,| B> —Ko;7,| B, (27)
where K= f wf(j_)%g(qz) dq . (28)

Next we let (E,+ip—H) operate on ¢; ¢, . We regard ¢, ¢, -+ as
higher order terms and use the approximation
(E,+in—H) ¢;=(E,+1ip—H,) ¢, , etc.. (29)

This approximation will be relatively good for lower incident energies
of the pion, because ¢, etc. are not very important at lower energies.
In this approximation we have :

(E,+ip—H) ¢,=L,a},al. | B)—MR2,(c;7,0al,
+o,tal) | B)—M2,al,al, AT f), ete., (30)
where L=(E,—22)/%2,, M=+T . (31)
If we insert (22) into (26) and (27), the right hand sides become linear
combinations of the terms of the form aj,al,---{p). Also the right
hand side of (30) consists of the terms of the same type. The same
is true of the right hand side of (24) if (22) is inserted. Thus, in this
approximation, Eq. (24) cah be solved by expressing X as a linear
combination of @, @, @ Py
The above method will be applied in the following sections to the
eigenstates of the total angular momentum and the total isospin. The
eigenstate is designated by 2I, 2J, where I is the total isospin and J
is the total angular momentum. The bare nucleon state is denoted by

| st), where s and ¢ denote the z-components of the spin and the isospin
of the nucleon. The real nucleon state is denoted by |s¢)>. The two

values of s=i—;— and tz—_l:—é— are denoted by =+, so that the nucleon

states are represented by | = =) and |+ = ). The following notation
is used:

oc:=(0,%+10,)/2 , (32)
a= (a3 Fia,)/v/2 , ete.. (33)

6. 3,3 wave scattering

The 3,3 state has a 16 fold degeneracy. We here consider the state
with the z-components of the total angular momentum and the total

isospin both equal to —{—%. The scattering is described by the state
vector

g=at ()| ++>+V(p)ZX. (34)
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In the second term the factor V(p) is ruled out for convenience. The
equation to be satisfied by X is

(B,+inp—H)X=20, 7. |+ + . (35)
Following the prescription of Sec. 5 we express X as
X=c¢:+ eyt c30; (36)
where ¢1=qu?_+_f:&-(;7q—)__7q at(@) |+ +>, (87)
$=95" X5, =925 X;, (38)
and X;=ali AT+ +), (39)
X3=i§all al.oit,] + +). (40)
We also use
i =ali |+ +). (41)
Applying the approximation of Sec. 5 we have
(E,+in—H) ¢=b, X;— b, X,— K(—4b, X, +8b, X,—8b, X;) — -+, (42)
(E,+ip—H) ¢,)=LX,—13MX,— .-+, (43)
(E,+in—H) ¢;=LX,—12MX,— ---, (44)
20,7, |+ + >=—4b, X,+8b,X,—8b, X;, (45)

where the dots represent the terms of the form a},al, al|p). Inserting
these into (35) we have

[4b,(1+ Kec) +by¢,—13Me,—12Mc,] X,
+[—8b,(1+ K¢,)—b, ¢,+ Le,] X,
+[8b,(1+ Ke,)+ Leg) X,=0. (46)

We have neglected the terms represented by the dots. Solving Egq.
(46) we obtain

R S __8b6,Q—b,
“TTQFK “TL@TE)
6= " LQ+K) (47)
_ Lb,—13Mb,
where Q= 4(Th,—2Mb,) ° (48)
According to (34), (36) and (37) the phase-shift § is given by
e —1=—2xi V(p) f(p) (0,/0) ¢, . (49)
Using (28) we have
e? —1=2ic, Im K. (50)

From (47) and (50) we finally obtain
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tan 6=—Im K/(Q+Re K) . (51)

Thus, the phase-shift turns out to be real. This result is the comn-
sequence of the approximation (29). At higher energies the appro-
ximation becomes inadequate, and we have to deal with the inelastic
effects.

7. 3,1 and 1,3 wave scattering

Since the present model is symmetric with respect to the angular
momentum and isospin, the 3,1 and 1,3 phase-shifts are equal to each
other, so that we here consider only the 1,3 wave scattering. In
particular we consider the state in which the z-component of the total

angular momentum is —l——g— while the z-componecnt of the total isospin

is arbitrary.
The scattering is described by the state vector

¢=2 D aly(p) | +5 (+t [0l +O)+ V(D)X (52)
The equation for X is
(Eptin—H)1=v2 Z o, 73| +1'5 (+1 | 72l +¢). (58)
We express X as _
A=c,¢;+cy9,1¢; 0,5, (54)
where
6=3 3 [dg— LD @) [+t (+¢ )+, (55)
Rl » g
Gy=020" X, ¢ =025" X, , (56)
and Xl=§ al;z;|+1t), (B7)
Xzz; al; A ;| +1), (58)
stEZ al;z; AV|+1) . (59)
Using the approximation of Sec. 5 we have
(Ep+inp—H) ¢,=by X,— b, X,— K(2b, X,+2b, X,—2b, X;) — -+, (60)
(Ey+in—H) ¢,=LX,—TMX,— +--, (61)
(Ep+in—H) ¢,=LX,—3MX,— +-+, (62)
V2 ST oy nltt ) (+ | | +6)=2b, X, +2b, X,~2b, X, . (63)

Inserting these into (53) and neglecting the terms represented by dots
in (60), (61) and (62) we have
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[—2b,(1+Ke,)+ b, c,—TMc,—8Me,} X,

+[—2b,(1+ Ke¢,) —b, ¢,+ Le¢,) X,+[2b,(1+ Ke,)+ Le,] X,=0.

Solving this equation we obfain

_______l___ — 2b2 Q'—b1
9T TTQ¥K “TLQ+K)
—__ 20,Q
“TTLR+K)
_ TMb,—Lb,
Where Q=575+ 8Mb, -

The phase-shift is given by
tan 6=—Im K/(Q+Re K) .

8. 1,1 wave scattering
The 1,1 wave scattering is described by
¢g=2 T (D) |t ('t ovess)+ V(D)X
The equation for X is
(Ep+in—H) 1= g_; SZZ oital st (St o,7a]8t).
We express X as

X=c ¢+ Cypytcs dstcigy,

where d=wy'|sty,
1&,qujg)wamw§vxyﬂwnnm,
¢ QO s 9254:‘90_1 X4 ’
and X, =| st) , X,=A"|st),
Xy= 2 alalilst), X,=A"|st).

Using the approximation of Scc. 5 we have

(Ep+ip—H) ¢,=b, X,—b, X,+b, X,

(Bp+in—H) ¢,=b, X,—b, X;— K(9b, X,— b, X,+8b, X;+b, X)— -+,

(Ep+in—H) ¢;=LX,—2MX,— -+,
(Ep+in—H) ¢,=LX,—10MX,— ---,

Zz Eﬁ gt 8t )t |o;7,]st)=9b, X,— b, X;+8b, X, +b, X, .

Inserting thses into (69) we have

(64)

(65)

(66)

(67)

(68)

(69)

(70)
(71)

(72)

(73)
(74)
(75)

(76)
(77)
(78)
(79)
(80)
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[— 9b0(1 +K02) -+ bo C]] X1+ [bl(l +K02) - b1 01+ bo Co— ZMca— 10MC4] Xg
+[—8by(1 +Kcz)+L03] X, +[—bs(1+Key)+by¢,—b; o+ Le,] X,=0,

from which we obtain

9 1
C=Q+EK N ES
85,0 o 854D,
7 LQ+K) ‘7 LQ+K)’
 Lb,—10Mb,
where Q="3RMb,—Lby) *

The phase-shift is given by
tand=—Im K/(Q+Re K) .

9. Results and conclusion

71

(81)

(82)

(83)

(84)

The results of the computation are shown in Figs. 1-4 in compa-
rison with the results of the phase-shift analysis of experimental data
performed by Roper and Wright.™ Roper and Wright also obtained
the phase-shifts of the s-, d-, and f-waves, while the present model
gives only the p-wave phase-shifts. The two curves in each of Figs.
1-3 are in qualitative agreement with each other; the 3,3 phase-shift

160 160
120 120 +
o> 80 S 80r
3 3
o 40 O 40+
0 0 8
\‘\\(
A
-40 L L i L L -40 L 1 { ! -
P 0 100 200 300 0 100 200 300
Ex (MeV) E. (MeV)
Fig. 1. The 3,3 phase-shift §33 versus Fig. 2. The 3,1 phase-shift., The
the pion incident energy E.=wp,—p. notation is the same as in Fig. 1.

Curve A is the result of the present
computation. Curve B is the solution
BO3 of the phase-shift analysis of Roper
and Wright.1?
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160 160
120 + 120
o 80r S 80Ff
3 g
" =
w 40+ «©w 40}
B AE/
0 —— 0
A \
: A
-40 . L 1 1 ! - | 1 1 1 1
0 100 200 300 4 100 200 300
E. (MeV) E. (MeV)
Fig. 3. The 1,3 phase-shift. The Fig. 4. The 1,1 phase-shift. The
notation is the same as in Fig. 1. notation is the same as in Fig. 1.

passes through 90° at about 200 MeV, while the 3,1 and 1,3 phas-shifts
are small and negative. The agreement is not quite satisfactory in
Fig. 4, 1.e., the experimental curve for the 1,1 phase-shift is positive
at higher energies, while the theoretical curve is negative, although
both are small. In order to improve the theory it would be necessary
to take account of the effects of the pion-resonances such as p.
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