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It is known that the exact wave function of an atom or a molecule
should have a cusp at r;,=0. On the other hand, it is known that the
one-electron density associated with the Hartree-Fock wave function
is, in gemneral, close to the true density. In the present paper, it is
suggested that the above two points should be taken into account in
constructing an approximate wave function of an atom or a molecule.

1. Correlation between electrons in atoms and molecules

The Hamiltonian of an atom or a molecule is written as

H=_—§-§AJ—2-ZL+E !

o, ’raj' J<k 7"jk

(1)

in the atomic units, where —-%A,- is the kinetic emnergy operator of

the electron j. —Z,[r,; is the Coulomb interaction between the nucleus
a and the electron j, and 1/r;, is the Coulomb interaction between the
electrons 7 and k. The nuclei are treated as fixed point charges. It
is difficult to obtain the exact eigen-function of the Hamiltonian H.
A rather good approximation to the eigen-function is obtained in the
form of a Slater determinant
1
=T ¢1(1‘1, 0) weeeer ¢n(r1, o1)
¢1(rn, O'n) o ¢n(rn, O'n)

or a certain linear combination of such determinants. In (2), r; and
o; denote the spatial and spin coordinates of the electron 5. The func-
tions ¢, are called spin orbitals.

When the spin orbitals in the determinant or the determinants
are determined so as to minimize the expectation value of the energy,
the Slater determinant or a certain linear combination of Slater de-
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terminants appropriate to the symmetry of the atom or the molecule
under consideration is called the Hartree-Fock wave function. The
Hartree-Fock wave function represents the state in which each electron
moves in the average field produced by the other electrons. In order
to make improvement on the Hartree-Fock wave function, one has to
take account of the correlation between electrons.

There are two main methods to take account of the effect of the
correlation. One method is to use a linear combination of Slater
determinants. This method is called CI (configuration interaction)
method. In principle, the exact eigen-function can be approximated
arbitrarily close by the CI method. However, the convergence is
usually not rapid. The second method to take account of the correla-
tion is to include 7;, explicitly in the wave function. In this method,
it is easy to ensure the correct behavior of the wave function in the
neighborhood of 7;,=0. However, the explicit inclusion of 7;, in the
wave function leads to complicated integrals in the calculation of the
expectation value of the energy. Thus, in either of the two methods,
the computation is rather cumbersome. Therefore, it is worthwhile
to search some guiding principle in the construction of an approximate
wave function of an atom or a molecule to make the amount of com-
putation smaller. The present paper is concerned with this problem.

2. Cusp condition

The Hamiltonian (1) has a sigularity at 7,,=0 and at 7;,=0.
These sigularities arise on account of the situation that the nuclei
and the electrons are treated as point charges. Actually, however,
the nucleus is not a point charge, but has some spread. On the other
hand, the electron is commonly recognized as a point charge in the
sense that the interaction between a nucleus and an electron is ex-
pressed by —Ze*r in the Dirac equation. However, the wave function
pertinent to the use in quantum chemistry is the two-component
wave function obtained from the Dirac wave function through Foldy-
Wouthuysen transformation followed by the disregard of the small
components. This transformation brings about various magnetic inter-
action terms in the Hamiltonian, and besides we have a term which
corresponds to the spread of the charge of the electron. Namely, the
electron charge should be treated to have a spread with the mean
spuare radius

(ry=—- (-1, (3)

The same conclusion is arrived at by a more complete quantum
electrodynamical treatment.” The situation that the electron charge
has a spread in this sense has its origin in the fact that one can not
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localize the four-component Dirac wave function to a point by super-
position solely of the positive energy wave functions.

When the spread of the charges of the nuclei and the electrons
is taken into account, the Hamiltonian contains no singularity, and
the wave function is smooth everywhere. Actually, however, the
spread of the charges of the nuclei and the electrons is quite small,
and the particular size of the spread does not matter in most problems
of quantum chemistry. Therefore, it is practically correct to take the
limit of the infinitesimal spread. The Hamiltonian (1) represents this
limit. The wave function in this limit possesses a cusp at r.;=0 and
at 7;,,=0. These cusps are characterized by the so-called cusp condi-
tion.

The cusp condition at 7,;=0 reads

lim 1[92 dS= 42,7, @
where the integral is over the surface of the sphere with a small
radius ¢ around 7,;=0, and = is the outward normal. The differentia-
tion and the integration are to be taken with respect to the coordinate
of the electron j. A simple example of the cusp of this type is seen
in the s type wave function of the hydrogen atom.

The cusp condition at 7»;,=0 reads

lim- (57 dS=2r¥ . ®)
Here the differentiation and the integration are to be taken with
respect to the relative coordinate r=r;—r, keeping the coordinates of
the electrons other than 7 and k¥ and the center of gravity of the
electrons 7 and %k fixed.

The proof of the cusp condition is as follows. First we assume
the spread of the charges of the particles, and we assume that the
spread is spherically symmetrical. The electrostatic interaction be-
tween two charged particles, then, is a function only of the distance
between their centers. Therefore, the potential term in the Hamil-
tonian has the form

V=3 Valra)+ Z Viry,) . (6)
a,d J<lk
The Hamiltonian
= — % 2 4,4+V )

has no singularity, and so the eigen-function is smooth everywhere.
The eigen-function satisfies the Schrédinger equation

— SAF+VI=EY. @®)
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Now we fix the coordinates of the electrons other than j, and integrate
the two sides of (8) with respect to r; within a small sphere of radius
e around the nucleus a. By Green’s theorem we obtain

o as=Afv-nr- £ 4,940, (9)
We make the spread of the charges of the particles infinitesimal, and
further take the limit of ¢e—0. Then, in the integrand of the right
hand side, only the term 2V,.(r,;) gives a non-vanishing contribution,
provided that all the 74,’s except r,; and all the r;,’'s are not zero. In
this way we obtain (4).

In order to derive (5), we transform r; and r, to their center of

gravity

_ Tt

rg— 5 (10)

and the relative coordinate
r=r;—r,. (11)

The kinetic energy of the electrons 5 and % is then expressed by |
1 1
—5 U+ 4)=—— 4,—4, (12)

where 4 and 4, are the Laplacian operators with respect to r and r,.
We fix the coordinates of the electrons other than 5 and k and fix ry,
and integrate (8) with respect to r over the region |r|<e. We proceed
further just in the same way as before, and finally obtain (5).

A more mathematical discussion on the cusp condition is found in
the paper by Kato.? Further study of the behavior of the wave
function in the neighborhood of 7,;=0 or #,,=0 has been made by
Pack and Brown.?”

The r,; type cusp is familiar as already pointed out with the
example of the hydrogen atom. On the other hand, the r;, type cusp
condition can not be satisfied by a determinantal wave function. One
method to incorporate the r;, type cusp is to take the wave function
of the form®

r=Co, (18)
where @ is a determinantal wave function, while C is the correlation
factor

C= II f(’l"jk) . (14)
J<k
When f(r;,) has the form |
flr;)= (1+% 7"jk> X (smooth function), (15)

¥ satisfies the cusp condition at »;,=0.



Dec. 1975 Combined Use of Cusp Condition and One-Electron Density Condition 77

3. One-electron density

In this section we shall explain the situation that the Hartree-
Fock wave function gives a good one-electron density.” For simplicity,
we consider the case of a single determinant.

When a single spin orbital in the determinant is replaced by
some other spin orbital, we call it a single replacement. It is well
known that the matrix element of the Hamiltonian between the HF
wave function and a wave function obtained from the HF wave
function by a single replacement is zero, provided that the spin orbitals
used are orthonormal. Therefore, such single replacement wave func-
tions are not mixed with the HF function in the first order perturba-
tion treatment. This situation leads to the result that the one-electron
density associated with the HF wave function is close to the omne-
electron density associated with the exact eigen-function which is to
be obtained by the complete CI calculation.

As the simplest example, we consider the ground state of the He
atom. The HF wave function of He has the form

D(ry, ro) =u(ry) u(ry) , (16)

the spin part being omitted. The one-electron density associated with
this wave function is given by

pr)=2 (1@, r) Jpdv’ (17)

where the factor 2 is the number of electrons. From (16) and (17) we
have

o) =2]ur) 2. (18)

Since the single replacement functions are not expected to be strongly
mixed with the HEF function, we first need to consider the mixing of
the double replacement function of the form »(r) v(r;). As a result
we shall have a CI wave function of the form

U(ry, r)=~1—7 ulr) u(ry) +nv@r) v(ry) . (19)

Assuming that u(r) and »(r) are orthonormal, the one-electron density
associated with the wave function of (19) is given by

p(r) =2)rl Ur,r') P do' =2 ulr) P+ 20| v(r) '~ u(r) [} . (20)
By comparison of (18) and (20), we see that the change in the one-

electron density is of the order of 7? when the change in the wave
function is of the order of 7.
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4. Combined use of cusp condition and
one-electron density condition

According to Sec. 2, the correct eigen-function satisfies the cusp
condition (5). On the other hand, according to Sec. 3, the correct
eigen-function has the one-electron density which is close to that of
the HF wave function. It will be helpful to keep in mind these two
points in constructing an approximate wave function of an atom or
a molecule.

As mentioned in Sec. 1, there are two methods of incorporating
the correlation effects, 4.¢., the CI method and the method of explicit
inclusion of »;, in the wave function.

When we adopt the r;, method, we can directly incorporate the
cusp condition simply by taking f(r,,) of the form (15), as mentioned
in Sec. 2. Unless the form of f(r;,) and the orbital part @ in (13) are
chosen adequately, however, the wave function ¥ of (18) may not give
a good one-electron density. On the other hand, if the CI method is
used, the one-electron density will automatically be close to that of
the HEF wave function, as explained in Sec. 3. However, as far as
the CI expansion is limited to a finite number of terms, the cusp
condition is not satisfied exactly.

Thus, the two methods are complementary. When we use the
f(r;,) method, we have to be careful to adjust the parameters in the
correlation factor as well as those in the orbitals so as to give a one-
electron density which is close to that of the HF wave function. If
we use the CI method, we have to choose configurations so as to
obtain a wave function which approximately satisfies the cusp condi-
tion. In this way, the combined use of the cusp condition and the
one-electron density condition will help the construction of an appro-
ximate wave function of an atom or a molecule.

As an example of the combined use of the cusp condition and the
one-electron density condition, we consider the ground state of the
helium atom. A wave function of the form

Wi, r)=exp (5 71s) $(r) $(r) (21)

obviously satisfies the cusp condition at r,=0. To determine the func-
tion ¢(r), one method would be to employ the energy minimization
principle. Hewever, it would be of some value to use the one-electron
density condition to determine ¢(7) and to compare the result with
the result of the energy minimization, because this simple example is
the prototype of larger atoms and molecules and the investigation of
this prototype will give some insight into the correlation problems in
more complicated systems.

For actual treatment, it is necessary to formulate the one-electron
density condition more precisely. For this purpose, we denote the
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one-electron density associated with the wave function of (21) by p(r)
and that of the Hartree-Fock wave function by p(r). The function
é(r), then, is to be determined so as to make p(r) as close to p,(r) as
possible. This statement, however, is qualitative rather than quanti-
tative, because we do not have any quite definite measure for the
difference between p(r) and p,r). For a quantitative treatment, we
need to define a measure for this difference, though there is a certain
arbitrariness in this definition. We may, for example, adopt the
quantity

A4={Tp)— o)} dv (22)
as the measure for the difference between p(r) and p,(r). Then, the
function ¢(r) is to be determined by the condition

d=minimum. (23)

Detailed results of the computation on this and further examples
will be reported elsewhere.
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