A Note on Normal Homogeneous Riemannian Spaces

Yosuke Ogawa

Department of Mathematics, Faculty of Science Ochanomizu University (Received September 2, 1974)

Introduction. Let M be a Riemannian space whose group of isometries admits the compact connected identity component G_0 which acts transitively on M. G_0 has an $Ad(G_0)$ -invariant Riemannian metric, and if the action Ad(H) of the isotropy group H of $o \in M$ is irreducible on $T_0(M)$, then the induced invariant metric on M coincides with the original one. More generally, let G be a connected Lie group and Hbe a closed subgroup of G. Denote the Lie algebras of G and H by S and S. We suppose that G admits an Ad(G)-invariant metric \langle , \rangle . Let M be the orthogonal complement of S in S. Since M is invariant by Ad(H) we can extend the inner product \langle , \rangle of \mathfrak{M} to all of the coset space M=G/H by the left translation of G on G/H. space M is Riemannian homogeneous and we call M with this metric a normal Riemannian homogeneous space. Our main purpose in this note is to study the nullity space of the affine curvature tensor of a normal Riemannian homogeneous space. We obtain a sufficient condition under which a normal Riemannian homogeneous space becomes the product space of a group space and a normal Riemannian homogeneous subspace. The result can be applied to the symmetric case.

1. Normal Riemannian homogeneous spaces. Let G, H and M=G/H be as in the introduction. Then for all x,y of \mathfrak{G} and $a\in G$, we have

$$\langle \mathrm{Ad}(a)x, \mathrm{Ad}(a)y \rangle = \langle x, y \rangle,$$

and hence

(2)
$$\langle [x, y], z \rangle + \langle y, [x, z] \rangle = 0$$

for all x, y and z of \mathfrak{G} . From (2) it follows that the space G/H is naturally reductive Riemannian homogeneous, i. e.,

holds good. There exists the so called canonical connection D on G/H. Denote the Riemannian connection on G/H by \overline{V} and the Riemannian curvature tensor by R. Then D satisfies

1

$$D_X Y = \nabla_X Y - \frac{1}{2} T(X, Y)$$

for vector fields X and Y on G/H. The torsion and curvature tensors T and B of D satisfy

$$(4) T(x,y) = [x,y]_{\mathfrak{m}},$$

(5)
$$B(x, y)z = [[x, y]_{\mathfrak{F}}, z]$$

for x, y, z of \mathfrak{M} . B and T are G-invariant and parallel with respect to the connection D. It can be shown easily that it holds for a vector fields X on G/H

(6)
$$R_{X} = B_{X} - \frac{1}{4} T_{X}^{2}$$

where R_X , B_X and T_X are the (1, 1)-tensors given by

$$R_X(Y) = R(X, Y)X,$$
 $B_X(Y) = B(X, Y)X,$
 $T_X(Y) = T(X, Y).$

Then by virtue of (2), (5) and (6), the Riemannian sectional curvature of the 2-plane spanned by orthonormal vectors x and y in \mathfrak{M} is given by

(7)
$$k(x, y) = ||[x, y]_{\mathfrak{P}}||^2 + \frac{1}{4}||[x, y]_{\mathfrak{M}}||^2.$$

It follows that the normal Riemannian homogeneous space has the nonnegative sectional curvature.

2. Nullity spaces. Let \mathfrak{M}_0 be the nullity space in \mathfrak{M} of the curvature operator B_x , that is, $\mathfrak{M}_0 = \{x \in \mathfrak{M} \; ; \; B_x y = 0 \text{ for all } y \in \mathfrak{M}\}$. If $x \in \mathfrak{M}_0$, then we have $\langle B_x y, y \rangle = \langle [[x, y]_{\mathfrak{P}}, x], y \rangle = ||[y, x]_{\mathfrak{P}}||^2 = 0$ for all $y \in \mathfrak{M}$. Hence \mathfrak{M}_0 coincides with the space $\{x \in \mathfrak{M} \; ; \; [x, y]_{\mathfrak{P}} = 0 \text{ for all } y \in \mathfrak{M}\}$ = $\{x \in \mathfrak{M} \; ; \; B_y x = 0 \text{ for all } y \in \mathfrak{M}\}$. We put $\mathfrak{M}' = \text{the subspace of } \mathfrak{M} \text{ spanned by } [\mathfrak{M}, \mathfrak{P}] \text{ which we write simply as } [\mathfrak{M}, \mathfrak{P}] \text{ and } \mathfrak{M}_0^{\perp} \text{ the orthogonal complement of } \mathfrak{M}_0 \text{ in } \mathfrak{M}.$

LEMMA 1. The subspaces \mathfrak{M}_0 , \mathfrak{M}' and \mathfrak{M}_0^{\perp} are Ad(H)-invariant.

PROOF. Since Ad(h) is an isomorphism of the Lie algebra \mathfrak{G} for any $h \in H$, we have $Ad(h)[\mathfrak{M}, \mathfrak{G}] = [Ad(h)\mathfrak{M}, Ad(h)\mathfrak{G}] = [\mathfrak{M}, \mathfrak{G}]$. Thus \mathfrak{M}' is Ad(H)-invariant. Next if $x \in \mathfrak{M}_0$, then $[Ad(h)x, y]_{\mathfrak{g}} = (Ad(h)[x, Ad(h^{-1})y])_{\mathfrak{g}} = Ad(h)[x, Ad(h^{-1})y]_{\mathfrak{g}} = 0$ for all $y \in \mathfrak{M}$, and hence Ad(h)x belongs to \mathfrak{M}_0 . As Ad(h) is an orthogonal transformation on \mathfrak{M} , the orthogonal complement \mathfrak{M}_0^{\perp} is Ad(H)-invariant.

LEMMA 2. \mathfrak{M}' is contained in \mathfrak{M}_0^{\perp} and especially $[\mathfrak{M}_0, \mathfrak{H}] = (0)$.

PROOF. Let $x \in \mathfrak{M}$ and $\alpha \in \mathfrak{H}$. Then $\langle [x, \alpha], y \rangle = -\langle \alpha, [x, y] \rangle =$

 $-\langle \alpha, [x, y]_{\mathfrak{P}} \rangle = 0$ for all $y \in \mathfrak{M}_0$. It follows that $[x, \alpha] \in \mathfrak{M}_0^{\perp}$ and hence $\mathfrak{M}' \subset \mathfrak{M}_0$. As \mathfrak{M}_0 is invariant by $\mathrm{Ad}(H)$, we have $[\mathfrak{M}_0, \mathfrak{P}] \subset \mathfrak{M}_0$. On the other hand $[\mathfrak{M}_0, \mathfrak{P}]$ is a subspace of \mathfrak{M}' and hence of \mathfrak{M}_0^{\perp} . Therefore we have $[\mathfrak{M}_0, \mathfrak{P}] = (0)$.

LEMMA 3. If $y \in \mathfrak{M}_0^{\perp}$ satisfies $[y, \alpha] = 0$ for all $\alpha \in \mathfrak{H}$, then y = 0.

PROOF. For any x in \mathfrak{M} , we have $||[x, y]_{\phi}||^2 = \langle [x, y]_{\phi}, [x, y] \rangle = \langle [x, y]_{\phi}, x], y \rangle = -\langle x, [[x, y]_{\phi}, y] \rangle = 0$, and hence $[x, y]_{\phi} = 0$ holds good. Thus y belongs to both of the spaces \mathfrak{M}_0 and \mathfrak{M}_0^{\perp} , from which y = 0 follows.

THEOREM 1. Let G/H be a normal Riemannian homogeneous space and $\mathfrak{S}=\mathfrak{M}+\mathfrak{H}$ be the natural decomposition. Then we have the following orthogonal decomposition

$$\mathfrak{M}=\mathfrak{M}_0+[\mathfrak{M},\mathfrak{H}]$$

where \mathfrak{M}_0 is the nullity space of the curvature tensor B.

PROOF. It is sufficient to show $\mathfrak{M}'=\mathfrak{M}_0^{\perp}$. For this purpose, we take the orthogonal complement \mathfrak{M}'' of \mathfrak{M}' in \mathfrak{M} . Then \mathfrak{M}'' is invariant by $\mathrm{Ad}(H)$, and hence we have $[\mathfrak{M}'', \mathfrak{H}] \subset \mathfrak{M}''$. Clearly $[\mathfrak{M}'', \mathfrak{H}]$ is contained in \mathfrak{M}' . Thus $[\mathfrak{M}'', \mathfrak{H}]$ is zero space. By virtue of Lemma 3 if follows $\mathfrak{M}''=(0)$.

The following lemma is obtained by direct calculation:

LEMMA 4. For x, y and z of \mathfrak{M} , we have

$$R(x, y)z = B(x, y)z + \frac{1}{4} \{2[[x, y]_{m}, z]_{m} - [x, [y, z]_{m}]_{m} + [y, [x, z]_{m}]_{m}\}.$$

If one of the vectors x, y and z belongs to \mathfrak{M}_0 , then

$$R(x, y)z = \frac{1}{4}[[x, y], z] = \frac{1}{4}[[x, y]_{m}, z]_{m}.$$

3. Geodesic spaces. A subspace \Re of \Re is called geodesic if T(x,y) and B(x,y)z belong to \Re for all x,y and z of \Re . Then it is known that $K=\operatorname{Exp}_0\Re$ is a complete totally geodesic subspace of M=G/H and taking the smallest subalgebra \Im of \Im containing \Re , K is the normal Riemannian homogeneous space G'/H' where G' is the associated connected subgroup to \Im of G and $H'=G'\cap H$.

LEMMA 5. We have $[\mathfrak{M}_0, \mathfrak{M}'] \subset \mathfrak{M}'$.

PROOF. Let $x \in \mathfrak{M}_0$, $y \in \mathfrak{M}$, $\alpha \in \mathfrak{H}$. Then from Jacobi identity and Lemma 2 we have $[x, [y, \alpha]] = -[y, [\alpha, x]] - [\alpha, [x, y]] = -[\alpha, [x, y]]$. Since $[x, y]_{\mathfrak{H}} = 0$, it follows that $[x, [y, \alpha]] = [[x, y]_{\mathfrak{M}}, \alpha] \in \mathfrak{M}'$. The lemma follows easily because any element of \mathfrak{M}' is the union of $[y, \alpha]$, $y \in \mathfrak{M}$, $\alpha \in \mathfrak{H}$.

ĺ

THEOREM 2. \mathfrak{M}_0 is a subalgebra and a geodesic space.

PROOF. Take $x, y \in \mathfrak{M}_0$. Then it is trivial that B(x, y) vanishes. Let z be in \mathfrak{M}' . From Lemma 5 we have $[x, z] \in \mathfrak{M}'$. Hence we have $\langle T(x, y), z \rangle = \langle [x, y]_m, z \rangle = -\langle y, [x, z]_m \rangle = 0$. This means T(x, y) is orthogonal to \mathfrak{M}' and hence belongs to \mathfrak{M}_0 . Therefore it follows that $[x, y] \in \mathfrak{M}_0$ which shows \mathfrak{M}_0 is a subalgebra.

THEOREM 3. $\mathfrak{M}'=[\mathfrak{M},\mathfrak{H}]$ is geodesic if and only if $[\mathfrak{M}_0,\mathfrak{M}']=(0)$.

PROOF. Let x, y and z be in \mathfrak{M}' . Then $B(x, y)z = [[x, y]_{\mathfrak{p}}, z] \in \mathfrak{M}'$, and hence \mathfrak{M}' is geodesic if and only if $T(x, y) = [x, y]_{\mathfrak{M}} \in \mathfrak{M}'$, that is $[\mathfrak{M}', \mathfrak{M}']_{\mathfrak{M}} \subset \mathfrak{M}'$. On the other hand we have $\langle [x, y]_{\mathfrak{M}}, w \rangle = -\langle y, [x, w] \rangle$ for $w \in \mathfrak{M}_0$. Therefore $T(x, y) \in \mathfrak{M}'$ if and only if [x, w] is orthogonal to \mathfrak{M}' . Since $[x, w]_{\mathfrak{p}} = 0$ and by virtue of Lemma 5, it follows that $[x, w] \in \mathfrak{M}_0 \cap \mathfrak{M}' = (0)$. The theorem is proved.

REMARK. Since the geodesic curves with respect to the canonical affine connection D are the same as those with respect to the Riemannian connection V, we see that \mathfrak{M}_0 is geodesic and $M_0 = \operatorname{Exp}_0 \mathfrak{M}_0$ is a totally geodesic subspace of the Riemannian metric of M. M_0 is a subgroup of G.

4. Riemannian product structure. Taking consideration of Ad(H)-invariance of \mathfrak{M}_0 and \mathfrak{M}' , there exist two orthogonal distributions V_0 and V' on G/H defined by $V_0(L_g o) = L_g \mathfrak{M}_0$, $V'(L_g o) = L_g \mathfrak{M}'$ where L_g denotes the left translation by $g \in G$ on M and o is the image of the identity by projection $G \rightarrow G/H$.

LEMMA 6. The distribution $V'(resp.\ V_0)$ is parallel along $V_0(resp.\ V')$ with respect to the Riemannian connection provided that $[\mathfrak{M}_0,\mathfrak{M}']$ =(0).

PROOF. Take $x \in \mathfrak{M}_0$ and $y \in \mathfrak{M}'$. Then the geodesic curve $c_t = L_{\exp tx}o$ is in M_0 . We show that V' is parallel along c_t . From the definition of V', it is sufficient to show that the vector field $Y = L_{\exp tx}y$ is parallel along c_t , i. e., $V_XY = 0$, $X = L_{\exp tx}x$. Since $[\mathfrak{M}_0, \mathfrak{M}'] = (0)$, we have $T(X, Y) = L_{\exp tx}[x, y]_{\mathfrak{M}} = 0$, and hence $V_XY = D_XY = 0$ because Y is D-parallel along the geodesic c_t . On the other hand if $[\mathfrak{M}_0, \mathfrak{M}'] = (0)$, then by virtue of Theorem 3, the space \mathfrak{M}' is geodesic and there is a totally geodesic subspace M' of M at o. Then the same argument as above shows that V_0 is parallel along V'.

From this lemma, it follows that the space M has the local Riemannian product structure of $M_0 \times M'$ if $[\mathfrak{M}_0, \mathfrak{M}'] = (0)$ is satisfied.

LEMMA 7. If the sectional curvature of any 2-plane spanned by

orthonormal vectors $x \in \mathfrak{M}_0$ and $y \in \mathfrak{M}'$ is zero, we have $[\mathfrak{M}_0, \mathfrak{M}'] = (0)$.

PROOF. By virtue of Lemma 4, we have for $x \in \mathfrak{M}_0$, and $y \in \mathfrak{M}'$ $R(x,y)x = \frac{1}{4}[[x,y],x]$. It follows that the sectional curvature k(x,y) of the 2-plane spanned by x and y is $\langle R(x,y)x,y\rangle = \frac{1}{4}||[x,y]||^2$. Thus k(x,y)=0 if and only if [x,y]=0.

Next we suppose that the group G is simply connected and $[\mathfrak{M}_0,\mathfrak{M}']=(0)$. Taking the subspace $\mathfrak{G}'=\mathfrak{M}'+\mathfrak{H}$, we get the direct sum decomposition $\mathfrak{G}=\mathfrak{M}_0+\mathfrak{G}'$. Since \mathfrak{M}_0 commutes with $\mathfrak{H}, [\mathfrak{M}_0,\mathfrak{G}']=(0)$ holds good. By virtue of Theorem 3, \mathfrak{G}' is a subalgebra, and \mathfrak{M}_0 is too. Now take the connected Lie groups G_0 and G' in G associated to subalgebras \mathfrak{M}_0 and \mathfrak{G}' . Then we have the direct product decomposition $G=G_0\times G'$ on account of simply connectedness of G. Since G is contained in G', it follows that $G/H=G_0\times G'/H$, and $G_0=\exp \mathfrak{M}_0=M_0$ and $G'/H=\exp_0\mathfrak{M}'=M'$. We see that locally the product is Riemannian, and hence we obtained the following theorem.

THEOREM 4. Let G/H be a normal Riemannian homogeneous space of a simply connected Lie group G and $\mathfrak{S}=\mathfrak{M}+\mathfrak{H}$ be the natural decomposition. We suppose that the sectional curvature k(x,y) of any 2-plane spanned by the orthonormal vectors $x \in \mathfrak{M}_0$ and $y \in \mathfrak{M}'$ is zero. Then we have the Riemannian product $G/H=G_0\times G'/H$. In the group manifold G_0 , k(x,y) is given by $\frac{1}{4}||[x,y]||^2$ for orthonormal $x,y \in \mathfrak{M}_0$ and the submanifold G'/H is a normal Riemannian homogeneous space.

REMARK. G_0 is flat if and only if \mathfrak{M}_0 is abelian. It is shown that if $\mathrm{Ad}(H)$ acts transitively on \mathfrak{M}' , then G'/H has positive sectional curvature.

COROLLARY. Let G be a simply connected Lie group. If the normal Riemannian homogeneous space G/H is symmetric, then the nullity and its orthogonal distributions are parallel along each other, and we have the Riemannian product structure $G/H=G_0\times G'/H$ where G_0 is flat and G'/H is a normal symmetric homogeneous space.

Bibliography

- [1] S. Kobayashi and K. Nomizu: Foundations of differential geometry, vol. II, New York, 1969.
- [2] I. Chavel: Riemannian symmetric spaces of rank one, New York, 1972.