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Introduction. Let M be a Riemannian space whose group of
isometries admits the compact connected identity component G, which
acts transitively on M. G, has an Ad(G,)-invariant Riemannian metric,
and if the action Ad(H) of the isotropy group H of oM is irreducible
on TW(M), then the induced invariant metric on M coincides with the
original one. More generally, let G be a connected Lie group and H
be a closed subgroup of G. Denote the Lie algebras of G and H by
® and . We suppose that G admits an Ad(G)-invariant metric (, .
Let M be the orthogonal complement of $ in @. Since M is invariant
by Ad(H) we can extend the inner product <, of I to all of the
coset space M=G/H by the left translation of G on G/H. Thus the
space M is Riemannian homogeneous and we call M with this metric
a normal Riemannian homogeneous space. Our main purpose in this
note is to study the nullity space of the affine curvature tensor of a
normal Riemannian homogeneous space. We obtain a sufficient con-
dition under which a normal Riemannian homogeneous space becomes
the product space of a group space and a normal Riemannian homo-
geneous subspace. The result can be applied to the symmetric case.

1. Normal Riemannian homogeneous spaces. Let G, H and
M=G|/H be as in the introduction. Then for all z,y of & and ¢ <G,
we have

(1) CAd(a)z, Ad(a)y)> =<z, ¥,
and hence
(2) [z, y], 2>+ <y, [x, 2> =0

for all z,y and z of & From (2) it follows that the space G/H is
naturally reductive Riemannian homogeneous, i.e.,
(3) [, lcm

holds good. There exists the so called canonical connection D on G/H.
Denote the Riemannian connection on G/H by ¥V and the Riemannian
curvature tensor by R. Then D satisfies
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DY =V,Y— —;—T(X, Y)

for vector fields X and Y on G/H. The torsion and curvature tensors
T and B of D satisfy

(4) T(%, y)=[2, Ylm
(5) B(z, y)z=[[x, yls, #]

for z,y,z of M. B and T are G-invariant and parallel with respect
to the connection D. It can be shown easily that it holds for a vector
fields X on G/H

(6) RX:BX_%‘sz

where Ry, By and Ty are the (1, 1)-tensors given by
Tx(Y)zT(X, Y).

Then by virtue of (2), (5) and (6), the Riemannian sectional curvature
of the 2-plane spanned by orthonormal vectors z and y in I is given
by

™ k(a, ) =1l ylol =+~ i[, 91l

It follows that the normal Riemannian homogeneous space has the
nonnegative sectional curvature.

2. Nullity spaces. Let % be the nullity space in I of the
curvature operator By, that is, M={x=M; B,y=0 for all yeM}. If
x<M, then we have (Byxy, y>=<[[®, yle, ], > =llly, z]s|[’=0 for all ye
M. Hence M, coincides with the space {x=M; [z, ylo=0 for all ye}
={xeM; B,x=0 for all yeM}. We put M =the subspace of M spanned
by [, 9] which we write simply as [, §] and M the orthogonal
complement of M, in M.

LEMMA 1. The subspaces My, W and M- are Ad(H)-invariant.

PROOF. Since Ad(k) is an isomorphism of the Lie algebra & for
any heH, we have Ad(h)M, O]=[Ad(R)M, Ad(R)D]=[M, ). Thus W is
Ad(H)-invariant. Next if x €M, then [Ad(k)x, y]e=(Ad(R)[z, Ad(A )y,
=Ad(h)[x, Ad(h Yyle=0 for all y=M, and hence Ad(h)xr belongs to M.
As Ad(h) is an orthogonal transformation on M, the orthogonal com-
plement M- is Ad(H)-invariant.

| LEMMA 2. W s contained in My~ and especially [N, H]=(0).

PrROOF. Let zeM and acH. Then [z, al, ¥w=—{a, [, yI)=
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—La, [, Yle» =0 for all yeM, It follows that [z, a]=eM;" and hence
WM. As M, is invariant by Ad(H), we have [M, HlcM,. On the
other hand [M, ] is a subspace of M’ and hence of M;-. Therefore
we have [I, $1=(0).

LEMMA 3. If y=M satisfies [y, al=0 for all a9, then y=0.

PROOF. For any 2z in WM, we have [([z, ylol*=<[2, yls, [x, y]>=
Az, Yo, ], yp = — <2, [z, ¥ls, ¥1> =0, and hence [z, yl,=0 holds good. Thus
y belongs to both of the spaces M, and M+, from which y=0 follows.

THEOREM 1. Let G/H be a normal Riemannian homogeneous space
and @=M+9 be the natural decomposition. Then we have the follow-
wng orthogonal decomposition

M=Mo+ [, D]

where M, is the nullity space of the curvature temsor B.

PrOOF. It is sufficient to show W/'=M,". For this purpose, we
take the orthogonal complement N of W/ in M. Then M is invariant
by Ad(H), and hence we have [, H]W’. Clearly [, H] is contained
in M. Thus [WM’, ] is zero space. By virtue of Lemma 3 if follows
M’ =(0).

The following lemma is obtained by direct calculation :

LEMMA 4. For x,y and z of M, we have
R(zx, y)z= B(=, y)z+—i—{2[[x, Ylm 2lm— [, [y, 2lmln+19, (2, 2lnln}.
If one of the vectors xz,y and z belongs to M, then

R(zx, y)z:i— ([, ], z]=~i—[[w, Ylms 2l

3. Geodesic spaces. A subspace & of M is called geodesic if
T(x,y) and B(z,y)z belong to & for all z,y and 2z of ® Then it is
known that K=Exp,&® is a complete totally geodesic subspace of
M=G/H and taking the smallest subalgebra & of & containing &, K
is the normal Riemannian homogeneous space G'/H’ where G’ is the
associated connected subgroup to & of G and H'=G'NH.

LEMMA 5. We have [, N1 I

PRrROOF. Let 2, y=M, acH. Then from Jacobi identity and
Lemma 2 we have [z, [y, all=—[y, [a, z]l—[a, [z, y]]=—[a, [, y]]. Since
[z, yle=0, it follows that [z, [y, all=[[%, ¥ln, a]=I. The lemma follows
easily because any element of 9 is the union of [y, a], yeM, a=H.



62 Y. Ocawa NSR. O0.U., Vol. 25

THEOREM 2. M, 728 a subalgebm and a geodesic space.

PrOOF. Take z,y=I,. Then it is trivial that B(z,y) vanishes.
Let z be in 9. From Lemma 5 we have [z, z]=9%. Hence we have
{T(x, y), 2>=L[2, Yln, 2>=—<¥, [2, 2]n>=0. This means T(z,y) is ortho-
gonal to M and hence belongs to M, Therefore it follows that [z, ¥l
€M, which shows 9, is a subalgebra.

THEOREM 3. =M, O] is geodesic if and only if [N, V']1=(0).

PROOF. Let x,y and z be in 9. Then B(x, y)z=[[z, yls, 21,
and hence 9 is geodesic if and only if T(x, y)=[z, ylnsI, that is
[V, 9 ]1xcD?Y. On the other hand we have [z, yln, w)=—<y, [x, w])
for weMN,. Therefore T(x, y)=WW if and only if [z, w] is orthogonal
to NY. Since [z, w],=0 and by virtue of Lemma 5, it follows that
[z, w] WD =(0). The theorem is proved.

REMARK. Since the geodesic curves with respect to the canonical
affine connection D are the same as those with respect to the Rie-
mannian connection /, we see that %, is geodesic and M,=Exp, T
is a totally geodesic subspace of the Riemannian metric of M. M, is a
subgroup of G.

4. Riemannian product structure. Taking consideration of
Ad(H)-invariance of 9, and N, there exist two orthogonal distribu-
tions V, and V'’ on G/H defined by V(L,0)=L M, V'(L,0)=LM where
L, denotes the left translation by g=G on M and o is the image of the
identity by projection G—GJH. '

LEMMA. 6. The distribution V'(resp. V,) is parallel along Vresp.
V') with respect to the Riemannian connection provided that [N, D]

=(0).

PROOF. Take z€M, and y=9’. Then the geodesic curve ¢,=
Lexpiz0 is in M, We show that V'’ is parallel along ¢;. From the
definition of V’, it is sufficient to show that the vector field Y=
Lexp 12y is parallel along ¢;, i.e., V2 Y =0, X=L.p 2. Since [y, Wl=
(0), we have T(X, Y )= Lexp i:[%, ¥]ln=0, and hence VyY=D;Y =0 because
Y is D-parallel along the geodesic ¢;. On the other hand if [9%, ]
=(0), then by virtue of Theorem 3, the space 0t is geodesic and there
is a totally geodesic subspace M’ of M at o. Then the same argument
as above shows that V, is parallel along V.

From this lemma, it follows that the space M has the local Rie-
mannian product structure of M,x M’ if [, V1=(0) is satisfied.

LEMMA 7. If the sectional curvature of any 2-plane spanned by
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orthonormal vectors reM, and y=W 1s zero, we have [Py, M']=(0).

PROOF. By virtue of Lemma 4, we have for z=M, and yeWW
R(x,y)m:—i—[[m, yl, z). It follows that the sectional curvature k(x,y)

of the 2-plane spanned by x and y is <{R(z, y)x, y>=—411—ll[w, yll]>. Thus
k(x, y)=0 if and only if [z, y]=0.

Next we suppose that the group G is simply connected and
[, M ]1=(0). Taking the subspace & =+, we get the direct sum
decomposition &=N,+&. Since M, commutes with H, [N, &'1=(0) holds
good. By virtue of Theorem 3, & is a subalgebra, and MM, is too.
Now take the connected Lie groups G, and G’ in G associated to sub-
algebras M, and &. Then we have the direct product decomposition
G=GX G on account of simply connectedness of G. Since H is con-
tained in G’, it follows that G/H=G,xG'[H, and G,=exp My,=M, and
G'|H=ExpMW =M'. We see that locally the product is Riemannian,
and hence we obtained the following theorem.

THEOREM 4. Let G/H be a normal Riemannian homogeneous space
of a simply connected Lie group G and G=IN-+9 be the natural de-
composition. We suppose that the sectional curvature k(x,y) of any
2-plane spanned by the orthonormal vectors x=MW, and yWW is zero.
Then we have the Riemannian product GIH=G,XG'[H. In the group

manifold G, k(x,y) is given by ﬁé—lfll[oc, yliI* for orthomormal x,y<M,

and the submanifold G'[H is a normal Riemannian homogeneous space.

REMARK. G, is flat if and only if 9% is abelian. It is shown
that if Ad(H) acts transitively on 9¢, then G'/H has positive sectional
curvature.

COROLLARY. Let G be a simply connected Lie group. If the normal
Riemannian homogeneous space G[H is symmetric, then the nullity and
its orthogonal distridbutions are parallel along each other, and we have
the Riemannian product structure G/H=G,X G |H where G, is flat and
G'|H is a normal symmetric homogeneous space.
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