On a Characterization of the Bochner Curvature Tensor=0

Noriko Ogitsu and Keiko Iwasaki

Department of Mathematics, Faculty of Science, Ochanomizu University (Received February 13, 1974)

Introduction. In this paper, we give a characterization of the Bochner curvature tensor=0. Definitions, lemmas and Theorem are given in $\S 1$. We state in $\S 2$ some preliminary facts about *J*-bases. In $\S 3$ Theorem is proved.

§ 1. Preliminaries.¹⁾ We consider in this paper a Kählerian space M^{2m} of complex dimension m(>1). M^{2m} is a 2m(=n) dimensional Riemannian space admitting a parallel tensor field $J=(\varphi_{\lambda}^{\mu})$ such that

(1.1)
$$\varphi_{\lambda}{}^{\alpha}\varphi_{\alpha}{}^{\mu} = -\delta_{\lambda}{}^{\mu}, \qquad \varphi_{\lambda\mu}(=\varphi_{\lambda}{}^{\alpha}g_{\alpha\mu}) = -\varphi_{\mu\lambda}$$

where $g=(g_{\lambda\mu})$ denotes the Riemannian metric tensor. We shall denote by $R_{\lambda\mu\nu}{}^k$, $R_{\mu\nu}=R_{\lambda\mu\nu}{}^{\lambda}$ and R the Riemannian curvature tensor, the Ricci tensor and the scalar curvature of M^{2m} . Putting $R_{\lambda\mu\nu\omega}=g_{\omega\alpha}R_{\lambda\mu\nu}{}^{\alpha}$, we shall denote by \hat{R} the tensor $(R_{\lambda\mu\nu\omega})$.

A tensor $\hat{U}=(U_{\lambda\mu\nu\omega})$ of type $(0,\,4)$ will be called curvature-like, if it satisfies

$$(1.2) U_{\lambda\mu\nu\omega} = -U_{\mu\lambda\nu\omega} = -U_{\lambda\mu\omega\nu},$$

$$(1.3) U_{\lambda\mu\nu\omega} + U_{\mu\nu\lambda\omega} + U_{\nu\lambda\mu\omega} = 0.$$

As is well known,

$$U_{\lambda\mu\nu\omega} = U_{\nu\omega\lambda\mu}$$

hold good.

For any curvature-like tensor \hat{U} , we shall denote $\rho_U(X, Y)$ the *U*-sectional curvature of a 2-plane spanned by tangent vectors X and Y;

$$\rho_{U}(X, Y) = \frac{-\hat{U}(X, Y, X, Y)}{\|X\|^{2} \|Y\|^{2} - \langle X, Y \rangle^{2}},$$

where $\langle X, Y \rangle = g(X, Y)$ and $||X||^2 = g(X, X)$

The following lemma is well known.

¹⁾ In § 1, tensors are written in terms of their components with respect to a natural base and the Greek indices run from 1 to n(=2m) unless otherwise stated.

LEMMA a. For any curvature-like tensor \hat{U} , if any U-sectional curvature vanishes, then \hat{U} vanishes identically.

A 2-plane spanned by vectors X and JX is called a holomorphic 2-plane. An orthonormal pair of vectors $\{X,Y\}$ such that g(X,JY)=0 is called an anti-holomorphic orthonormal pair. The U-sectional curvature $\rho_U(X,JX)$ of the holomorphic plane spanned by X and JX is called a holomorphic U-sectional curvature. We shall denote it by $H_U(X)$. Especially, when $\hat{U}=\hat{R}$, we write $\rho_R=\rho$, $H_R=H$, and call them the sectional curvature, the holomorphic sectional curvature, respectively.

Furthermore a curvature-like tensor \hat{U} will be called K-curvature-like, if it satisfies

$$U_{\lambda\mu\nu\alpha}\varphi_{\omega}{}^{\alpha} = -U_{\lambda\mu\alpha\omega}\varphi_{\nu}{}^{\alpha}.$$

This equation means that \hat{U} is hybrid with respect to the last two indices. It is easily seen that a K-curvature-like tensor \hat{U} satisfies

$$\varphi_{\nu}^{\ \alpha}U_{\alpha\mu\nu\omega} = -\varphi_{\mu}^{\ \alpha}U_{\lambda\alpha\nu\omega}$$
.

LEMMA b. For any K-curvature-like tensor \hat{U} , if any holomorphic U-sectional curvature vanishes, then \hat{U} vanishes identically.

PROOF. For any orthonormal vectors X and Y, putting $g(X, JY) = \cos \theta$, we have (see [2] p 517)

$$\rho(X, Y) = \frac{1}{8} \left[3(1 + \cos \theta)^2 H(X + JY) + 3(1 - \cos \theta)^2 H(X - JY) - H(X + Y) - H(X - Y) - H(X) - H(Y) \right].$$

As the above equation is obtained from only the property of the K-curvature-likeness of \hat{R} , it is also true for any K-curvature-like tensor \hat{U} . Thus the proof of Lemma b is completed on taking account of Lemm a. Q. E. D.

The Riemannian curvature tensor $\hat{R}=(R_{\lambda\mu\nu\omega})$ of M^{2m} is, of course, an example of K-curvature-like tensors, and other examples are given by the following $\hat{Q}=(Q_{\lambda\mu\nu\omega})$ and $\hat{T}=(T_{\lambda\mu\nu\omega})$:

$$\begin{split} Q_{\lambda\mu\nu\omega} &= g_{\lambda\omega}R_{\mu\nu} - g_{\mu\omega}R_{\lambda\nu} + R_{\lambda\omega}g_{\mu\nu} - R_{\mu\omega}g_{\lambda\nu} + \varphi_{\lambda\omega}S_{\mu\nu} \\ &- \varphi_{\mu\omega}S_{\lambda\nu} + S_{\lambda\omega}\varphi_{\mu\nu} - S_{\mu\omega}\varphi_{\lambda\nu} - 2\varphi_{\lambda\mu}S_{\nu\omega} - 2S_{\lambda\mu}\varphi_{\nu\omega} \,, \\ T_{\lambda\mu\nu\omega} &= g_{\lambda\omega}g_{\mu\nu} - g_{\mu\omega}g_{\lambda\nu} + \varphi_{\lambda\omega}\varphi_{\mu\nu} - \varphi_{\mu\omega}\varphi_{\lambda\nu} - 2\varphi_{\lambda\mu}\varphi_{\nu\omega} \,. \end{split}$$

The tensor $S_{\lambda\mu}$ appeared above is a skew symmetric tensor defined by

$$(1.5) S_{\lambda\mu} = \varphi_{\lambda}{}^{\alpha} R_{\alpha\mu} \,,$$

and satisfies $\varphi_{\lambda}^{\alpha}S_{\alpha\mu} = -R_{\lambda\mu}$.

Let $B_{\lambda\mu\nu}^{\omega}$ be the Bochner curvature tensor, then $\hat{B}=(B_{\lambda\mu\nu\omega})$ is a K-curvature-like tensor given by

$$\hat{B} = \hat{R} - \frac{1}{2(m+2)} \hat{Q} + \frac{R}{4(m+1)(m+2)} \hat{T}.$$

Now, the purpose of this paper is to prove the following.

THEOREM.²⁾ In a Kählerian space $M^{2m}(m>1)$, the following three propositions A, B and C are equivalent to one another.

A.
$$\rho(X, Y) = \rho(X, JY)$$

holds good for any anti-holomorphic orthonormal pair $\{X, Y\}$.

B.
$$\rho(X, Y) = \frac{1}{8} \{ H(X) + H(Y) \}$$

holds good for any anti-holomorphic orthonormal pair $\{X, Y\}$.

- C. The Bochner curvature tensor vanishes identically.
- § 2. **J-base.** In the rest of this paper, we shall consider at p which is any point of a Kählerian space M^{2m} . It is well known that there exists an orthonormal base $\{e_{\lambda}\}$ of tangent space $T_{p}(M^{2m})$ such as

$$e_{i}^{*}=Je_{i}, \quad i=1,\ldots,m; \quad i^{*}=i+m.$$

Such a base will be called a J-base.

Henceforth, all tensors are represented by their components with respect to *J*-base. Indices λ , μ , ν and ω take from 1 to n(=2m) and i, j from 1 to m.

Taking account of $g_{\lambda\mu} = \delta_{\lambda\mu}$ and $e_{\lambda} = (\delta_{\lambda\mu})$, we have

(2.1)
$$\varphi_{ii*} = -\varphi_{i^*i} = 1,$$

$$\varphi_{i\lambda} = 0 \quad \text{for} \quad \lambda \neq i^*.$$

The Ricci tensor and $S_{\lambda\mu}$ in (1.5) satisfy

$$(2.2) R_{ij} = R_{i^*i^*}, R_{ij^*} = -R_{i^*j},$$

$$(2.3) S_{ij} = S_{i^*j^*} = R_{i^*j}, S_{ij^*} = -S_{i^*j} = R_{ij}.$$

By virtue of (2.2) and (2.3), we can get

$$(2.4) T_{ijij} = T_{ij^*ij^*}, Q_{ijij} = Q_{ij^*ij^*}, (i \neq j).$$

From the hybrid property of a K-curvature-like tensor \hat{U} , we know that its components $U_{\lambda\mu\nu\omega} = \hat{U}(e_{\lambda}, e_{\mu}, e_{\nu}, e_{\omega})$ satisfy

$$(2.5) U_{ij\nu\omega} = U_{i^*j^*\nu\omega}, \quad U_{ij^*\nu\omega} = -U_{i^*j\nu\omega}.$$

Thus taking account of (2.5), we get

²⁾ The analogous facts have been obtained by T. Kashiwada [3] independently.

(2.6)
$$\rho(e_i, e_j) = \rho(e_{i*}, e_{j*}), \quad \rho(e_i, e_{j*}) = \rho(e_{i*}, e_j).$$

§ 3. The proof of Theorem.

(I) $A \Rightarrow B$. Let $\{X, Y\}$ be an anti-holomorphic orthonormal pair, then

(3.1)
$$\rho(X,Y) + \rho(X,JY) = \frac{1}{4} \{ H(X+JY) + H(X-JY) + H(X+Y) + H(X+Y) + H(X-Y) - H(X) - H(Y) \}.$$

holds good [2]. If we put $X' = \frac{1}{\sqrt{2}}(X+Y)$, $Y' = \frac{1}{\sqrt{2}}(X-Y)$, then $\{X', Y'\}$ is anti-holomorphic orthonormal and hence by the assumption we get

(3.2)
$$\rho(X, Y) = \rho(X, JY), \quad \rho(X', Y') = \rho(X', JY')$$

On the other hand, the pairs $\{X, Y\}$ and $\{X', Y'\}$ span the same 2-plane, from which we have

$$(3.3) \qquad \rho(X, Y) = \rho(X', Y').$$

As the sectional curvature depends only on the plane, we obtain

$$H(X'+JY') = H(X-JY), \quad H(X'-JY') = H(X+JY),$$

(3.4)
$$H(X'+Y')=H(X), H(X'-Y')=H(Y),$$

 $H(X')=H(X+Y), H(Y')=H(X-Y).$

By virtue of (3.1), (3.2), (3.3) and (3.4)

$$\rho(X, Y) + \rho(X, JY) = \rho(X', Y') + \rho(X', JY')$$

$$= \frac{1}{4} \Big\{ H(X' + JY') + H(X' - JY') + H(X' + Y') + H(X' - Y')$$

$$-H(X') - H(Y') \Big\}$$

$$= \frac{1}{4} \Big\{ H(X - JY) + H(X + JY) + H(X) + H(Y) - H(X + Y)$$

$$-H(X - Y) \Big\}$$

Comparing the right hand side of the last equation with that of (3.1), we can deduce

(3.5)
$$H(X+Y) + H(X-Y) = H(X) + H(Y).$$

Putting $X'' = \frac{1}{\sqrt{2}}(X + JY)$, $Y'' = \frac{1}{\sqrt{2}}(X - JY)$, we have similarly the following equation.

(3.6)
$$H(X+JY)+H(X-JY)=H(X)+H(Y).$$

Substituting (3.5) and (3.6) into (3.1), we have

$$\rho(X, Y) + \rho(X, JY) = \frac{1}{4} \{ H(X) + H(Y) \}.$$

Using $\rho(X, Y) = \rho(X, JY)$, we complete the proof.

(II) **B** \Rightarrow **C**. We take any *J*-base $\{e_{\lambda}\}=\{e_{i}, e_{i^{*}}\}$ of $T_{p}(M^{2m})$. As the Bochner curvature tensor is *K*-curvature-like, it is sufficient to show $B_{ii^{*}ii^{*}}=0$ ($i=1,\ldots,m$) by virtue of Lemma b. By the assumption,

$$\rho(X, Y) = \frac{1}{8} \{ H(X) + H(Y) \}$$

is valid for any anti-holomorphic orthonormal pair $\{X, Y\}$. Hence we have

(3.7)
$$\rho(e_i, e_j) = \frac{1}{8} \Big\{ H(e_i) + H(e_j) \Big\},$$

$$\rho(e_i, e_{j^*}) = \frac{1}{8} \Big\{ H(e_i) + H(e_{j^*}) \Big\},$$

$$(i \neq j)$$

and

$$egin{aligned} R_{ii} &= H(e_i) + \sum\limits_{q \neq i}^m \left\{
ho(e_i, \ e_q) +
ho(e_i, \ e_{q^*})
ight\} \ &= H(e_i) + rac{1}{4} \left\{ (m-2)H(e_i) + \sum\limits_{q=1}^m H(e_q)
ight\} \ &= rac{m+2}{4} H(e_i) + rac{1}{4} \sum\limits_{1=q}^m H(e_q). \end{aligned}$$

Consequently it follows that

(3.8)
$$R_{ii} = R_{i*i*} = \frac{m+2}{4} H(e_i) + \frac{1}{4} \sum_{q=1}^{m} H(e_q),$$

(3.9)
$$R = 2 \sum_{i=1}^{m} R_{ii} = (m+1) \sum_{i=1}^{m} H(e_i).$$

On the other hand, it holds from the definition of \hat{B} that

$$\begin{split} B_{ii^*ii^*} &= R_{ii^*ii^*} - \frac{1}{2(m+2)} \, Q_{ii^*ii^*} + \frac{R}{4(m+1)(m+2)} \, T_{ii^*ii^*} \\ &= -H(e_i) + \frac{4}{m+2} \, R_{ii} - \frac{R}{(m+1)(m+2)} \, . \end{split}$$

Substituting (3.8), (3.9) into the above equation, we have

$$B_{ii^*ii^*} = 0.$$

(III) $\mathbb{C} \Rightarrow \mathbb{A}$. We take any *J*-base $\{e_{\lambda}\}$ of $T_p(M^{2m})$. The definition of \hat{B} gives us the following

$$B_{ijij} = R_{ijij} - \frac{1}{2(m+2)} Q_{ijij} + \frac{R}{4(m+1)(m+2)} T_{ijij}, \qquad (i \neq j),$$

$$B_{ij^*ij^*} = R_{ij^*ij^*} - \frac{1}{2(m+2)} Q_{ij^*ij^*} + \frac{R}{4(m+1)(m+2)} T_{ij^*ij^*}, \qquad (i \neq j).$$

By (2.4) $B_{ijij}=B_{ij^*ij^*}=0$ implies that

$$R_{ijij} = R_{ij^*ij^*} \qquad (i \neq j)$$

which means $\rho(e_i, e_j) = \rho(e_i, e_{j^*})$.

Bibliography

- [1] K. Iwasaki and N. Ogitsu: On the mean curvature for anti-holomorphic p-plane in Kählerian spaces, to appear in Tôhoku Math. Journ.
- [2] R.L. Bishop and S.I. Goldberg: Some implications of the generalized Gauss-Bonnet theorem, Trans. Amer. Math. Soc., 112 (1964), 508-535.
- [3] T. Kashiwada: Some characterization of vanishing Bochner curvature tensor, to appear.
- [4] S. Tachibana: On the mean curvature for holomorphic 2p-plane in Kählerian spaces, Tôhoku Math. Journ., 25 (1973), 157-165.
- [5] S. Tanno: Mean curvature for holomorphic 2p-planes in Kählerian manifolds, to appear.