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§1. Introduection

Field invariants® such as the energy momentum tensor, the an-
gular momentum tensor and the charge current vector associated to
a field have been derived from the scalar Lagrangian density of the
field so as to satisfy their respective conservation laws by virtue of
the Noether theorem™?®. These field invariants are expressed as
functions varying from a point in space-time to another. In other
words they are regarded as functions in space-time and written in
the space-time representation or the x-representation.

As in the preceding papers,®?® we postulate that the fundamental
laws of physics should be expressed free from representation frames
in the Hilbert space where the norm of a wave function u(x® ', 2% x°)
is defined by

(1117 uta®, o, o, 2P datdetdordar

that is, the square of the absolute value of u integrated over the
entire space-time.

We derive here field invariants free from representations such as
the z-representation or the p-representation, by establishing an ana-
logue of the Noether theorem, for the inhomogeneous Lorentz trans-
formation and for the gauge transformation of the first kind.

In §2, we summarize the Noether theorem after Fonda and
Ghirardi® In §3, we introduce the representative of the Lagrangian
density by way of the action. In §4, we formulate the Noether
theorem free from representations. In §5, we define the energy
momentum tensor, the angular momentum tensor and the charge
current vector free from representations with the aid of the Noether
theorem formulated above. In §6, we note some additional remarks
concerning conservation laws and compare conventional field invari-
ants and those in our formulation.
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§ 2. The Noether Theorem

Conservation laws in the field theory are founded on the basis of
the Noether theorem. The Noether theorem is derived from the as-
sumption that the Lagrangian density is invariant under an infinites-
imal inhomogeneous Lorentz transformation or an infinitesimal gauge
transformation. We denote a typical wave function by ¢*(x) and the
Lagrangian density by L(¢4(x), 8:64(x)), (0:6(x)=0¢4(x)/0x?), the index A
enumerating all independent wave functions. We consider an infini-
tesimal Lorentz transformation

t—Trt=gxt+al+ et pi =t dxt, (6= —¢5)

and denote the wave field referred to the coordinate system Z* by ¢4(%).

If we introduce two types of variation for wave functions, the local
variation o,

5144(2)=34(5)— $*(x)
and the total variation d,

org*(x)=8*(x) — ¢*(%),
there are the following relations

019" (w) = Ax*0,¢*(x) -+ 0rd*(x)
and
5L[aj¢A(w)]:Axkakajgbji(x)_‘_BT[ajgzsA(w)]
among them.
From the invariance of the Lagrangian density we get
d {a ¢A( ) Sr¢*(x) }+ A*d,L=0

or
A aL A k L
0 {a(a ¢A( ) 0.9 (x )‘l‘[ a(a, ¢A( ) 0;6*(x)+ Ly, ]Ax]}—o- (1)
This is the Noether theorem. The variation §.¢4(x) may be written as
5L¢ (90) —Ez]CHABSZSB(x) (2)
(CijAB:_CjiAB)

From the arbitrariness of ten independent parameters a* and e;; we
get the conservation laws of the energy momentum tensor T%; and
the angular momentum tensor M*/

akT kj:O
0,M*7=0
‘where

oL

T = S et ) O®

“(x)—Lg;* (3)
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. o - oL
Rij—mkipg __Pkipt | T~
M T g’ —T %"+ 2(2:6%(2))
If ¢*(x) admits the gauge transformation of the first kind, we have
dx*=0, 0.9*(x)=0r¢*(x)=1ap*(x)

CijAB¢B(m).

where « is an arbitrary real parameter. We get then conservation of
the charge current vector J*

aka:O

oL
90,9

where
JEF=1

. (4)

§3. The Lagrangian Density

We try to formulate the Noether theorem conforming to the
postulate of representation invariance. Since the Lagrangian density
depends on wave functions and their first derivatives at a point in
space-time, we introduce the representative of the Lagrangian density
{z|L|x'> by factorizing the action .L in some way. For example, the

action
L=LUla><xlpp*—m?|a' > |U>

of the scalar field U(x)=<{x|U), U*(x)=<Ulx), is factorized to give the
representative of the Lagrangian density

elLa' >y =<U x> x| pal’ > x|p*|a"" > | U D> —m* U | ><a| U >
= Upila'><xp*U> —mX (U’ ><x| U
CUpela’> =Tl <" |pela’>
Calp*U>=<zlp*|a"" ><a"'|U>

the signs of integration with respect to dummy suffices being dropped.
In general we make the requirement that the representative <{x|L|x’>
of the Lagrangian density is hermitian and bilinear in d{(¢*|z'>,
{p*pela’> and {x|¢*), {x|p.p*> and that the trace of {x|L|x’> is equal to
the action, or :
L =<x|Llz).

We assign to the vector and Dirac fields the following Lagrangian

densities respectively

(o|Lla'y = (@' pila’ > x|t —m*(p|a'> {wlps>
the vector field
(@lLIa"> = PuasDale?> + ML F oY}l b

where

+A B> (Caly e Dasp) +mal g}
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(¢=9'r")
the Dirac field.

There are certain relations useful in the following,

ole|Lls"y 9L oz|Llx'y oL

0gla’>  a{pta>’ o g pila’y — 8{ppilay 1 )
dCa|Lla’y _ 0L KolLle'y oL I

oK xlg> o'l olalpip”>  0la|pigy’

where {¢*|x>, {$*plx>, {x|¢p*> and {x|p;p*> are regarded as independent
variables. The variation of the action

0L oL o
0.L= a<¢Al 5<¢ I >+ a<¢A le> 5<¢ pile>
3 4 _3 4
-gives field equations
0.L oL
3w T apipdas ~<zx|pila’>=0
and or 8.,£’
a,

as the coefficients of d{¢*lx) and 5(00[95“) respectively.
To avoid clumsy use of suffices and make clear the independence
from the representation we use sometimes the following symbols®

oL oL

g =N instead of 5 =(aINY
—&%{pi =M*">  instead of ~a<—;j—£—']—o—cjz<leAi>
- —%;ETE<NA instead of 8<a°]i‘4> =(N4|x>
a;i> ={(M** instead of 8<ocal;f¢“‘> ={M*x).

Then field equations will be
N+ p,M4*> =0 }

(6)
(NA4- (M, =0.

§4. A Reformulated Noether Theorem

To derive the Noether theorem we assume that the representative
of the Lagrangian density is invariant under the infinitesimal inhomo-
geneous Lorentz transformation. We compute now the variation of
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<w|Llx'>
0. <%|Lla"y=<®| L7’y — {w|L]«'>
=<@|L|z'> — (x|Ll&'> +<x|L|#') — x| La’>
+6p<x|L]x">
where

dr<{@| L% > =<@|L|a’"> — <zl L|a’>.

Neglecting higher orders we have

0| Ljx'> = dx*0 . x| L|x' >+ 4x'*0, {x|L|x'> + 6 <{x| L|x">.

We see here that
Ax*0 x| L|a’'y = dx*{x|ip,L]x">

=<{x|JL|x'> (J=1dxz*py)
and
Ax'*0,) (x| Llx'> = — x| Lip.|a'> dx'*

= — x| Lipda|a’>

= —x|LJ|z'>
because of the relation

[pk’ Awk:I:[pk, afk"l_&}fjmj]:elfj(_i)gjk

=—-’ie’fk=0.
Therefore we have

0r<x|Lla'> =< x|[J, L]|a'> + d,<x|L]x">
or, in the representation-free form

BLLZ[J, L]+5TL.

(7)

(8)

We compute next the variation 6,L regarding <¢*, <@4p, ¢4>

and p;¢*> as independent variables, and we have

o<wx|L|x"> a1 0<z|Llz">
apila’y T OO G g s

O<w|Lla">
0<x|p*> 0<x|prp*>

= 074 |a'> (| N*> + 60 p*palac’> (| MA*)
+07<w] 4D CNA o> 4 0wl pag® > M4k ).
We note here that 6,p,=0, because, analogously to (8)
0rpr=[J, Del+0rDs
=P+ 07D

or<w|Llx'> = ,<{d*|2’>

+5T<w]¢A> +5T<x]¢Apk>

and
5L]0k=5klpz

from the transformation of a covariant vector.

o<x|Ljx'>
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Hence we have, with the aid of wave equations (6)
0| L’y = — 87<p* |a’> <ol ppM**> + 34| > {a” | pals’ > <] MA*)
— 0wl ) LM palas’> + 07< | ) Ll p ol > CMAH ">
OrLi= —p, M**><dr¢* + M**>{3¢*
—07¢*>{M** D+ 040> MA*
=[M**){07rp* — 0rg*> M, p].
We use here the relations
(Orgp*=<0.9* +<p*J
Orp*> =0.9*> —Jg*)

or

analogous to (8).
The final result is

5LL:[MAk><5L¢A—5L¢A><MAk+MAk><¢AJ
+J¢*Y KM%, pil+[J, L]=0. 9)
This is the equivalent to the Noether theorem (1).

§5. Field Invariants

However, the d,L does not have a divergence form. So we modify
it by use of the Jacobi identity and the relation

L=[Q" pi] (10)
where

Qk=é‘M"k><¢“—%¢A><M‘”- (11)

The relation (10) is proved as follows. Since <{z|L|z’)> is linear in

(%', {p*pil2’>, we have

o<x|Lla'>

!
<le|w,>:<%|¢A> ———————— —[—<xlpk¢f1>_m

a<90|pk¢A>
=@l >N > 4 oo™ > < DA*| 2>
L=¢*>{N*+pp* > M**
=[De, ¢*><M**]
by virtue of (6). We have similarly
L=N*)<(P4+ M**> {4 pp=[M**>{p*, pal.
From these relations we get (10) and

[E*, p]=0 (12)

or

where

RF=-L B4Ry (g g 5 M, (13)
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Use of the Jacobi identity and (10) leads to the expression
[, L1=[J, [Q% pJ1=[Q% [J, pJ]1+I[J, Q%], Dil
=[[J, Q*]—¢%Q", vl
and a modified Noether theorem
O L=[M*"><8,0*—0,¢*>{M**+ M**>{p*J
+ > M+, QF— Q' pl=0. (14y

If we pick up the coefficients of @', we have conservation of the
energy momentum tensor

(T ' Pk]zo (15)
where
Tk =M**>{¢* D+ 01" ><M** [, QF]
=R*p,+p,R*={R* D} (16)

({4, B}j=AB+ BA).

Direct verification of (15) is easy because of the relation (12).

If we pick up the coefficients of ¢,;, we get conservation of the.
angular momentum tensor ‘

[M*, pi]=0 (17)
MFI={T* g7} —{T*, 5} + Sk (18)
SFii= ARy (FBCHAB — (IAB GBS ( AR
+pi Rrx 4 2' R*p? — p' R*x? — 7 R*p* + ig*'Q’ — g Q".
For the scalar field, the divergence [S*", p,] vanishes. So the term

S* may be dropped from the left member of (18).
A symmetric energy momentum tensor @ may be given by

OV =T"+[p,, S¥i4 St*—S7*][44
following the standard procedure.®

If we start directly from (9), we have another energy momentum
tensor

where

'T* = M**>{¢*pi+ 0 p*>{M**—g* L
and another angular momentum tensor
TM¥I={T*%, g/} —{T*H, g} +'S*J
ISk = Sk —249*Q’ + 219" Q".
For the infinitesimal gauge transformation, we have
J=0, drp>=t1a¢>, <(iLp=—10{¢
and conservation of the charge current vector J*

[J* p:]=0 (19)
where
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J*=2R*
=M%y + g > M-, (20)

§6. Some Remarks

In classical field theory, the conservation of the charge current

9J*(x) _

oxt

yields the constancy of the space integral of J%«). This results from

integrating the above equation over the entire space

oJt | o

ox' = 0x’
under a suitable boundary condition.

An analoguous consequence holds in our case. Taking the trace
of the conservation equation

[T, D)= —[J", p]—L[J? Dol —[J° D]
over the entire space, we get
[tr JO’ po]: _tr{[le p]]+[J27 102]+[J3; 103]}:0

where tr A is defined by the integral of diagonal part of A over the
entire space, that is,

tr A=<2° o', 2% 2} Al2’°, x', 2%, x%).

The tr[J}, p.] vanishes since tr AB=tr BA, under suitable boundary
condition at infinity.

Therefore trJ° commutes with p, so trJ° is a constant.

In the same way, tr 7% is proved to be a constant vector, that is,
the energy momentum vector.

In classical field theory, the energy momentum tensor plays no
important role except for the provider of the energy momentum
vector. If we construct the energy momentum tensor of a scalar field
with a solution to the field equation, we meet a queer situation. The
scalar field equations

0

—3%; [ @) deidatdat= — [( g‘;)dwldﬁdﬁ: 0

(0%0,+m*)p(x)=0
(8*35+mYg*(z)=0
(L(z)=0,9*0*p —m’¢p*¢)
have a solution
#(x)=c exp(iq.x*),  o*(x)=c* exp(—iq.x*)

g being a constant momentum vector satisfying q.g*=m’. The solution
leads us to
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(21)

T kj(x) :2q”qjcc*
and

J¥x)=2q*cc*.

The tensor 7% (x) and the vector J*x) are constant throughout
the entire space time. Their Fourier transforms vanish everywhere
except for p,=p,=p,=p;=0. The consequence is very queer.

In our formulation we have

{wlg) = @(2), {Plad>=¢*(x)
x|T#a'>=2q"q*cc* expligy(a*—x'*)] }

CalJ*|a'y=2q*cc* expligy(a*—a'*)]

(22)

or, in the momentum representation,

{plp>=c'd(p—q),  <{plp>=c*(p—q)
<pIT®|p'> =2q*q¢'d ¢ *(p—q)d(p' —q)
<ol Hp'> =2g*c' *o(p—q)o(p’ —q)
C=c2a,  A(p)=d(p)3(pd(p)3(p).

These expressions describe that these field invariants are diagonal
in the p-representation and vanish except for p=92'=g¢q, in agreement
with the physical picture.

Comparison of two expressions (21) and (22) of energy-momentum
tensor or charge-current vector seems to make evident the failure of
the conventional formulation.

In conclusion we assert that field invariants discussed above should
be regarded not as functions depending on a position in space-time
but as observables depending on two positions in space-time, as is
exemplified by the density matrix.

When field variables ¢4, {¢* are quantized after the formula of
the second quantization,” the expectation value of the charge current
vector and that of the energy momentum tensor introduced in this
paper satisfy their respective conservation laws because field equations
still hold in their expectation values. A more detailed description will
appear elsewhere.

where
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