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1. Introduction

We have proved in [15] the following theorem : Let T be a positive
bounded linear operator in a Banach lattice £ which is irreducible?
and has the spectral radius 7(T)=1. Moreover let 1 be a pole of its
resolvent R(a,T). Then the spectrum of 7 on the spectral circle
2knq

consists of exp( > (k=0, ..., n—1 for a certain natural number =),

each of which is a pole of R(a, T).

The problem is how to reduce the properties of positive, not
necessarily irreducible, operators to those of positive irreducible
operators.

In the finite dimensional case, this is done by the classical theory
of normal form of reducible matrices. In the following A), B) and C)
we give a brief survey of this theory according to F.R. Gantmacher [3].

A)? A nonnegative square matrix A can be reduced by a per-
mutation of indices to the form

A0 ...0 0 0
0 A, ...0 0 0
A= 0O 0 LA, 0 o |,
Ag-l-l,l A9+1 2 "'Ag+1,g AQH O
As 1 AS,2 As,g As,g+1 As

1) An operator T in a Banach lattice E is called positive if f=0 implies Tf=0
and a positive operator T is called irreducible if there exists no nonzero T-invariant
closed ideal of E.

2) TFor this, see (69) p. 75 ibid.
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where A,, ..., A, are irreducible matrices and in each row A, , ..., 4,,_,
(f=g+1,...,8) at least one of them is not equal to zero matrix.

B)® In particular, if A is a stochastic matrix, then 4, ..., A, are
also stochastic matrices and each of A4,,,..., 4, has the maximum
eigenvalue less than 1. Therefore the spectrum of A on the unit
circle is reduced to those of A4, ..., A4,.

C) Let A=lim-* (I4+A+...+A™"). Then A has the form

n
A, O ... 0
0 A4, ... 0 0
A=l v, :
0O 0 ... A,
U 0

where 4, ..., A, are also stochastic.

The purpose of our paper is to extend these results A), B) and
C) to sub-Markov ergodic operators in C(X).

In §2, we are concerned with positive sub-Markov and strongly
ergodic operators in C(X) having spectral radius 1. In the first part
of this section, we shall determine the structure of the eigenspace of
such operators for the eigenvalue 1 by making use of Kakutani’s
representation theorem for (AM) spaces® and the characterization of
a point measure by a lattice homomorphic linear functional on C(£2)
(Theorem 1 and its Corollary). Using this result, a decomposition of
the space X will be made and an extension of A) to our case will be
given (Theorems 2 and 3). Most of the results in Theorems 1, 2 and 3
have been obtained by many authors, namely K. Yosida [24], S.P.
Lloyd [9], M. Rosenblatt [17], B. Jamison [4], H. H. Schaefer [21] and
T. Ando [2]. However, we believe that our method gives a unified
and at the same time a clearer formulation of these results. Theorem 4
in the final part of this section may be regarded as an extension
of C). '

Most of the results in §3 are contained implicitly or under more
restricted assumptions in our previous papers. These results will be
used in §4. Especially lemmas 2 and 5, together with Proposition 10
in §4 are fundamental in the investigation of §4. Among them
lemma 2, although its proof is easy, makes clear the induction process
in §3 and §4.

3) For this, see Theorem 6, p..77 or the proof of Theorem 10, p. 84 ibid.

4) For this, see (112) p. 97 ibid.

5) “abstract (M)-space” in the paper by S. Kakutani [5] wiil be denoted by (AM)
space.
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§ 4 contains our main result, Theorem 6, which asserts that the
spectral properties on the spectral circle of an arbitrary positive
uniformly ergodic sub-Markov operator are determined by the spectral
properties of its irreducible components. This theorem is an extension
of B), whereas Theorem 5 is an extension of C). Finally as an appli-
cation of Theorem 6 we shall give Theorem 7 stating the spectral
properties on the spectral circie for positive uniformly ergodic sub-
Markov operators.

Notations in this paper are as follows: For a Banach space FE,
{(E) is the set of bounded linear operators on F and E’ is the dual
of E. For TeQ(E), we shall denote by T, n(T), R(e, T), o(T), o(T),
P(T), R(T) and C,(T) the dual, the spectral radius, the resolvent
operator, the resolvent set, the spectrum, the point spectrum, the
residual spectrum and the continuous spectrum of 7T respectively.
Po(T) is the unbounded component of p(7'). I' stands for the unit
circle, i.e., I'={a: |a|=1}. C(X) is the Banach lattice consisting of
continuous functions on a compact Hausdorff space X, and, for z= X,
&, is the point measure which corresponds to x. For a subset S of
X, 1 is the characteristic function of S. In particular, I, will be
denoted simply by 1. A¢ A~ and A° is the complement, the closure
and the open kernel of A respectively. Finally the usual notation of
a vector lattice is used: f\v g is the join of f and g, and f*=fVvO0,
S =(=F)VvO0 and |f|=fV(—f)is the positive part, the negative part
andithe absolute value of f respectively.

2.7 A decomposition theory.

Let X be a compact Hausdorff space and EF=C(X). We suppose
that Te Q(E) is a positive, sub-Markov and strongly ergodic operator
with »(T)=1. Thus we assume that

I) T=0
1) Ti<1
III) ~T)=1
n—1
vy JET+ T
n

=M, converges strongly.

We denote by P the limit operator of M,, then P is a nonzero®, posi-
tive, sub-Markov projection operator with the spectral radius »(P)=1.
Moreover following relations are clear:

V) PT=TP=P, P'T'=T'P'=P’
VI) For feE, Tf=f is equivalent to Pf=f

6) By M.G. Krein and M.A. Rutman [8], 1 is an eigenvalue of 7-
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VII) For ¢ E', T'p=¢ is equivalent to Plp=¢."

The eigenspace of T for eigenvalue 1 is the closed subspace PE.
Inducing the order of E, PE becomes an ordered linear space. We
can prove easily the following

PROPOSITION 1. The order of PE induced by that of E 1is lattice
ordered : for any f, g PE, P(f\ g) is the least upper bound of fand g
which will be denoted hereafter by fv ¢.

REMARK 1. fvg=fvyg. fyvg=fvg for any f, g= PE if and only
if PE is a sublattice of E.

REMARK 2. Let P be strictly positive, i.e., f=0 and Pf=0 imply
f=0, then PE is a sublattice.

PROPOSITION 2. PE 1s an (AM) space with order unit P1.

PROOF. Since P is a positive sub-Markov projection, the following
inequalities for fe PE are equivalent to each other:

Nfl=1, —1=f=1, —PI<f<PI. _ 1)

We shall prove ||fVv(—=F)||=]||fll. Let ¢ be an arbitrary positive
number. Then, Proposition 1 implies the equivalence of —cPI<f
<cPl to —cPI=<fY(—f)=<cPI1. This together with the equivalence
of (1) implies the equivalence of [|f]|=¢ to ||fVY(—S)||<¢. Therefore
NV (=D Il=Ilfll. Since the order and the norm of PE are induced
by those of E, the property of the mnorm that ||f]|<|/g|| whenever
0=f<g¢ is inherited to PE. Therefore PE is a Banach lattice. The
equivalence of (1) shows that PI is the order unit of PE. Then PE
is an (AM) space with order unit PI1. n

PROPOSITION 3. (PEY is isomorphic to P'E’ as a Banach lattice.
In more detail, for any o< (PEY, the mapping

¢ — =poP
18 a bijective linear, order-preserving, isometric mapping between (PE)

and P'E', the inverse mapping being giwen by the restriction of ¢ on
the space PE.

PROOF. Since P is a positive contractive projection, the two
mappings in the proposition are positive contractions and are inverses
to each other. This proves the proposition. [l

7) T. Ando pointed out to us the following fact: For operator T such that |[T%|
is bounded, the existence of a projection operator P satisfying properties VI) and VII)
is equivalent to the strong ergodicity of T' with the limit operator P-
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Let @ be the set of invariant probability measures on X, i.e.,
O={p: oK', T'o=¢, ¢=0, ¢(1)=1} and let 4 be the set of extreme
points of @. Then we have the following

THEOREM 1. PE is isomorphic to C(A) as a Banach lattice.

PRrOOF. Applying Kakutani’s representation theorem for (AM)
spaces to proposition 2, we see that PE is isomorphic to C(£) as a
Banach lattice, where 2 is a compact Hausdorff space. This together
with proposition 3 implies that P’E’ is isomorphic to C(2) as a
Banach lattice. Since it is well known that £ is homeomorphic to
the set of extreme points of probability measures on £, we see that
£ is homeomorphic to 4. Therefore PE is isomorphic to C(4) as a
Banach lattice. /]

It is known, for example in H. H. Schaefer [20] p. 213, that a
probability measure ¢ on a compact Hausdorff space £ is an extreme
point of probability measures if and only if ¢ is a lattice homomorphic
linear functional on C(£2). By this fact and Theorem 1, we have

COROLLARY. An element o=@ belongs to A if and only if ¢ s
lattice homorphic on PE, 1.e.,

o(fv g)=Max(o(f), ¢(9))  for any f, g PE.

For any Ze'/l, let S; be the support of 21 and let S be the closure
of \US,. Then we have

PROPOSITION 4. Let f be an element of E. Then
P|f]=0 if and only iof  f=0 on S.

PrOOF. This follows from the fact that

APIN=41f1) for 2e4
and Theorem 1. /]

REMARK. {f: f=0 on S} is the 7T-radical in the sense of H. H.
Schaefer [22]. See also Theorem 4 ibid.

PROPOSITION 5. Let AicA. Then P'e,=2 for any x=S,.

PrOOF. To prove this proposition, we remark that PI=1 on S,
and fyvg=fVvg onS, for f, g= PE. These are clear from the following
relations:

fvg—fvgzo,

MY g—fVva)y=PAP(fVg)—fVg)=0,
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1—P1=0,
A(1—P1)=P'3(1—P1)=0.

Therefore P’e, for any ze<S, is lattice homomorphic on PE and
P’e(1)=1 and hence P’e,eA. Suppose that P’c,+ 1, then there exists
foe PE such that f,=0, A(f,)=0 apd P’c,(f,)>0 by Theorem 1. The
latter inequality means f,(x)>0. Since « is in the support of 2,
A(f)>0 must hold which is a contradiction. /!

For any A< 4, let
X,={geX: Ple,=2},

Xy={rxeX: PI1(x)=1, (fvg)x)=(fVg)z) for f, g PE}
and
X, ={xeX: PIl(x)=1}.

Then the following theorem are obtained:

THEOREM 2. i) For 14, S; is a compact subset of X,. ii) S s
a set of maximal measure for o=@, t.e., for any o=@, ¢(S)=1. iii)
X; for 24 is a compact set and X, and X, for 2, pe A, 2+ p are dis-
joint. iv) X, is compact and X0=1gX2. v) Let fe EE and 2 A. Then

a) f=0on S, wmplies Pf=0 on X,

b) f=0on S, implies Tf=0 on S, and Pf=0 on S,
c) f=0on S implies Tf=0on S and Pf=0 on S,

d) f=0 on X, implies Tf=0 on X, and Pf=0 on X,
e) f=0 on X, wmplies Tf=0 on X, and Pf=0 on X,
f) f=0 on X, vmplies Tf=0 on X, and Pf=0 on X,

PROOF. 1) follows from Proposition 5. Since ¢ is a ¢(E’, E)-limit
of convex combinations of elements of A, the proof of ii) is clear.
Let z be the mapping of X into P'E’ equipped with ¢(E’, E)-topology
such that »

t: & — Ple,. (2)

Then 7 is clearly continuous. This implies that X, for i 4 and X,
are compact. The remaining part of iii) is a direct consequence of
the definition and iv) follows from Corollary of Theorem 1. Let us
prove v). a) is clear by the definition of X,. Since P is the strong
ergodic limit of 7, the conclusions for P in b)~f) follow from those
for T. In proving the remaining part, we may assume that 0=f=1.
Then b) is proved easiiy. c) follows from b) and e) follows from d)
and iv). Therefore, we have to prove d) and f). To prove d), let 7
‘be an arbitrary positive number and let A,={z: flw)=5}. Then A,
is a compact subset of X and disjoint from X,. Let z(4,)=B,. Then
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B, is a compact subset of E’ disjoint from #(X;)=2. For any ¢eB,,
there exists f,C(X) such that A(f,)=0, ¢(f,)>0. Since 2, o= P'E,
we may assume f,< PE. By compactness of B,, there exists a finite
number of elements f,...,f,e PE such that A(f;)=0 and Max{p(f)),
v, 0(f2)} >0 for every o B,. Let fi=f,v...Vf,v0. Then fie PE. It
is easy to show that A(f;)=0 and ¢(f;)>0 for every ¢= B,. Since B, is
compact, ¢(f,) has the positive minimum ¢ on B,. Then f(x)=c on 4,
and f(x)=0 on X,. These imply

0§f§’7+%fo
and hence
0STFSTr+—ThiSy+-—fo

Therefore
0=Tf=%n on X,

This holds for any positive number 7, and assertion d) is proved. To
prove f), let f,=1—PI. Then, f(x)=0 on X,. For an arbitrary posi-
tive number 7, there exists a positive number ¢ such that f(x)=¢>0
on A, ={z: f(x)=n}. Since Tf,=f, is clear, the proof hereafter is
similar to the corresponding part of the proof of d) /!

REMARK. Let z be the mapping defined in (2). Then the inverse
image of 4 by z is equal to X,

By decomposition f=f+*—f~, we have

COROLLARY. The equality sign = in Theorem 2, v) can be replaced
by the inequality sign =. (For example, f=0 on S, implies Pf=0 on X,.)

Let f,=((S,), then there exists an element f= C(X) such that the
restriction of f on S; is f;. By Theorem 2, v), b), the restriction
(Tf)s, of Tf on S; is uniqueiy determined by f,. We define this
mapping by 7,. Thus

T:: fu— (Tf)lsl-

Similarly we can define P,. For C(X,) also we can go on in the same
way as for C(S,). The operators corresponding to 7, and P, will be
denoted by U, and @, respectively. Then we have

THEOREM 3. T, [resp. U,] is a positive Markox operator in C(S;)
[resp. C(X,)] with the spectral radius =1 and strongly ergodic, the limit
operator being P, [resp. Q,]. The eigenspace for T, [resp. U,] is one
dimensional with the base I, [resp. 1x] and the eigenspace for T,
[resp. U] is ome dimensional with the base A5, [resp. 2,z,]. Moreover T,
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18 trreducible.

PrOOF. Corollary of Theorem 2 implies that 7', is positive, It
is clear that T, is strongly ergodic with limit operator P,. Pf(x)
=P'e,(f)=4(f) for any xS, and fe E implies P,f;=2,(/1)1s, for any
£,C(S;). Then T, is a Markov operator with 7(T,)=1 and the eigen-
space of T, is one dimensional with the base I5. And also P/¢,(f))
=25(f)e(1s,) for any ¢,=C(S;) and f,=C(S,). Therefore the eigen-
space of T/ is one dimensional with the base 1. Replacing T, S,
and P, by U,, X; and @, respectively, we have the proof of all the
assertions for U, in the theorem. To prove the irreducibility of T,
let J be a nonzero closed T;-invariant ideal of C(S;). Then J is P;-
invariant since T, is strongly ergodic. For nonzero f, in J, P(|f;])
=24s(fi])1s, is in J. Since 2, is strictly positive, I, is in J which
implies J=C(S,). /!

For strict positivity of P we have

PROPOSITION 6. The following five conditions are equivalent to each
other :

i) P is strictly positive,
ii) \US; s dense in X,

red
iii) there ewxists a strictly positive set of positive T-imvariant

Sfunctionals ¢, for acs A,
iv) @ s strictly positive,
v) A is strictly positive,

where the strict positivity of a set ¥ of positive functionals means that
&(|f))=0 for all $=¥ implies f=0.

PROOF. Equivalence of i) and ii) follows from Proposition 4.
Equivalence of ii) and v) is clear by the definition of S,. Equivalence
of iii), iv) and v) is also clear /]

REMARK 1. Let one of the conditions in Proposition 6 is satisfied,
then S=X,=X,=X, in other words, PI=1 and X=\J X;,=(\US))".
14 =4

REMARK 2. If there exists a strictiy positive T-invariant funec-
tional on X, then condition v) in the proposition is satisfied and P is
strictly positive. This result was given in H. H. Schaefer [22] Pro-

position 12.

THEOREM 4. Let X be metrizable and P be strictly positive. Then
{1: X,=8;} is a set of the first category in A.
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To prove Theorem 4, we give the following

PROPOSITION 7. Let P be strictly positive and let O be an open
subset of X. Then the set

18 o nowhere dense subset of A.

PROOF. Let A°=B Dbe nonempty. Then, since the mapping T
defined by (2) in the proof of Theorem 2 is a continuous mapping
from X onto 4, the set C={x: v= X, P's,c B} is a nonempty open
subset of X and the set D=CNO is also a nonempty open subset of
X. There exists an element f,eC(X) such that f,=0, f,+0 and f, is

identically 0 on D°. Then, for 2 A4, S,cO°c D*. This implies A(f,)=0
for every 2 in A and also A(f,)=0 for every A1 in A~ and therefore

A(f)=0 for every AicB. (3)
On the other hand, let Ae B®. Then S,cC°c D°. This implies
Af)=0 for every AieB-. (4)

(8) and (4) imply A(f;)=0 for every A= 4. This contradicts the strict
positivity assumption for P by the equivalence of i) and v) in Pro-
position 6. )

PROOF OF THEOREM 4. Since X is a metrizable compact Hausdorff
space, there exists a countable open base {O,} of X. Let

Ay={2: S;N0,=¢, 0,NX,+ ).

Then, by Proposition 7, 4, is a nowhere dense subset of 4. Let X,=S,.
Then X,\S; includes a nonempty set O,NX,, since X,\S, is open in X,.

Therefore {A1: S,#X,} is included in the set OA,L. This shows that
. n=1
the set {1: S;#X,} is a set of the first category. //

REMARK. The conclusion of Theorem 4 can not be replaced by the
assertion that the set {4: X,=S;} is empty.

Counter-example® . Let X=[-—1, 1] and let
Tf(w)=%(1—_1wl)f(—!wl>+é—(1+lwl)f(1x|>-

Then T=P, PE={feC(X): f(x)=f(—x)} and P is strictly positive.
Therefore X=X,. For reX,

8) This example is due to S. Miyajima.
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1 1
P/Srz—z-(l_lxl)3—1x|+——(1+lw‘)elxl-
2
Thus 4 is homeomorphis to [0, 1] by the correspondence
1 1
zy:? 1—y)e_,+ -'é-(l’l‘y)sy

for any y<[0, 1]. Then S, =X, ={y, —y} for y<[0, 1), but
S, =1} # X, ={-1, 1}.

3. Some lemmas.

LEMMA 19. Let E be a Banach space, T be in (E), F be a T-
invariant closed subspace of E and a be in the unbounded component
0T of p(T). Then F 1is R(a, T)-invariant.

PROOF. Let |a|>||T|]. Then the expansion R(a, T)=§ln:1—

. =0 O
shows that F is R(a, T)-invariant. Since R(«, T') is holomorphic in
-(T), the conclusion follows for all elements « in p (7). /!

REMARK. The conclusion of the lemma does not hold necessarilly
if we replace the condition a=p (7)) by the one ac= p(T).

Counter-example: Let T be the bilateral shift, 4.e., let =0, +1,
+2,..., E={{z,}: 2,€eR, —co< limz,=lima,<+o} and T be the

n—-+co n——00

~ operator defined by T{#x,}={%,;,}. Then, 0cpo(T) and R(0, T)=T"' and
the subspace {{z,}: 2,=0 for n=0} is T-invariant but mnot R(0, T)-
invariant.

For an arbitrary operator T in a Banach space E, and for an -
arbitrary T-invariant closed subspace F' of E, we define the operator
T|F by (T|F)a(f)==(Tf), where = is the canonical mapping of E onto
E[F. This operator T[/F will be called the operator induced on E/F
by T.

LEMMA 21, Let R={a: acp(T), R(a, TYFCF}. Then the follow-
wng relations hold :

0-AT)C R =po(T, )N p(T|F)=p(T)No(T|F)=p(T)Np(T;).  (5)
Further, for ac R,

9) For this lemma see I. Sawashima [18], Lemma 1.

10) For this lemma, see A.E. Taylor [23], p. 270, I. Sawashima [18], Lemma 1,
2, F. Niiro and Sawashima [15], footnote 10), H.P. Lotz [10], Lemma 4.8 and H.P.
Lotz and H.H. Schaefer [11], Lemma.
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R(a, T\p)=R(a, T') 5 : (6)
R(a, T|F)=R(a, T)[F* (")
B, T)f=9—R(a, T p){(a—T)9— 1} (8

where g s any element such that R(a, T|F)x(f)==(g).

PROOF. Lemma 1 implies p. (T)cR. We shall prove the follow-
ing four inclusion relations from which (5) is proved easily:

Rco(Ti)Np(T[F) (9)
o(Tir)Np(T[F)C o(T) (10)
o(T)N (T )R (11)
o(T)Np(T[F)C R. (12)

By definition of R, it is clear that (6) and (7) hold. Consequently (9)
is proved. (11) and (12) are also clear. To prove (10), let us assume
that « is an element of o(T\;)Np(T/F). For any fekFE, let g satisfy
n(g9)=R(a, T/F)z(f). Then ar(9)—(T/|F)z(g9)==(f). This means (ag—Tg)
—feF. Let |

h=g— R(a, T,»){(ag—Tg)—f}-

Then 4 is uniquely determined by f, since f=0 implies g F' and
consequently ~=0. We define Rf=h. Then

(el -TYRf=(al—T)h ‘
=(ag—T9)—(al—T)R(a, T\r){(ag—Tg)—f}
=ag—Tg—{(ag—T9)—f}
=f.

Thus (al—T)R=1I.
Let f, be an arbitrary element of E and let f=(al—T)f,, Then

a(f)=ar(f)—(T[F)x(f,) and consequently z(f,)=R(a, T[F)z(f). Thus,
by definition of R,

Rf=f,—E(a, T\p){(afy—Tfo)—f} =1

Therefore R(al—T)=I1. Then R is the resolvent operator of 7' and
so acp(T). Thus (10) is proved. The definition of R=R(a, T')
implies (8). - /!

- COROLLARY 1. Let acR. Then

| B(a, T[F)||, || B(e, T\ ) ||| Bler, T) |
and

11) R(a, T)/F is the operator induced on E/F by R(a,T).
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| B(a, T)l|= || Ba, T|F)||+]] R(a, T|F)H‘{(la-lJrIITH)\IIR(d, T[F)||+1}.
PROOF. The inequalities are clear by (6), (7) and (8) in Lemma 2.//

COROLLARY 2. Let «, be an isolated point of R°. Then the follow-
ing implications hold.

i) If a, is a pole of R(a, T) of order k, then «, s a pole of both
R(a, T\z) and R(a, T/F) of order at most k.

i) If a, is a pole of R(a, T\y) of order k, and of R(a, T|F) of order
k,, then «, is a pole of R(a, T) of order at most k,+k,.

PROOF. Let r be a positive number such that
A={a: 0<]a—a,|=rCR.

Then «, is a pole of R(a, T) of order at most k¥ if and only if
|J(ea—ay)*R(a, T)]] is bounded on A. This together with inequalities
in Corollary 1, proves (i) and (ii). /]

LEMMA 3. Let E be a Banach space, T ¥ E) and a,cp(T). If ¢
and d are positive numbers such that ||R(a, T)||<c and cd<1, then

|a—a| <d implies a< p(T) and || Ria, T)|| <~ ¢ -
—c
PROOF. 1t is clear by the expansion
E(a, T)=3 Rlay T)(a—a)*". Il

LEMMA 4. Let E be o Banach space, T < 2(E) be a contraction. If
a, is a complex number such that |a,|=1 and «, is a pole of R(a, T) of
order k, then k=0 or k=1.

PROOF. It is enough to prove the lemma in the case a,=1. Let
a>1, then the expansion
R(a, T)=3 T"fa""
n=0
implies
' 1

a~..

|| B(e, )} =

Let A_, be the leading coefficient of R(a, T') at a=1. Then
NA_l|=1lim |[(a —1)*R(e, T)||<lim (a—1)*"".
all all )
Therefore k& must be less than or equal to 1. /!

LEMMA 5.2 Let E be a Banach lattice and T < (E) be a positive

12) For this lemma see F. Niiro [12], Lemma 2, also F. Niiro [13], Theorem 2,
I..Sawashima [18], Lemma 6 and F. Niiro and I. Sawashima [15], Proposition 7.4.
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operator with ||T||=r(T)=1 and 1 be a pole of R(a,T) and let P be
the residual operator of R(a, T) at 1. If b is a positive number such
that

sup | B(e, TY(I—P)|| =™,

a>l

then the relations

feE, |aj=1 and IITf—aofll<%lvlfH

mmply
| PLf) ng-;—ufu-

Proor. Let Tf—a,f=g. Then

T|\flzlfl—19gl-

Let a=1 +i. Then
4b

(al=T)|fl=(a—=1)|f]-+]g]
Since R(«, T') is a positive operator, we get
|f| S(a—1)EB(e, T)|f]+ R(a, T)|g].
Let Q=I—P. Then
[f1=(a—1)R(a, T)(P+Q)|f|+ R(a, T)|g|

=P|f|+(a—1)R(a, T)Q|f1+ R(a, T)|gl.
Therefore

111 (@=1)l| Ria, TYI—P)|| [|F1+1I Be, TH |l g1+ 1| P11l

This, together with || R(a, T)||<1/(a—1) and ”g”<Té‘6”“ 7|, implies

. 1 1
1= (+— ) I+ LA
Therefore we get

—;—anénPlfl I /]

LEMMA 6. Let E be a Banach lattice and TeQ(E) be a positive
wrreducible operator such that »(T)=1 and 1 s a pole of R(a,T). Let
r be a positive number such that

{a: O<|a—1|<ricp(T)

and «a, be in o(T)NI'. Then there exists an operator DeQ(FE) such
that

13) This supremum is finite and P is the projection to the eigenspace of 7 for 1
because 1 is a pole of R(a, T) of order 1 by Lemma 4.
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De YE),

| Df|=|D7f|=|f] for any f<E,
{1 D]|=]ID7*||=1,

T=a,'D'TD

and
R(a, TY=a,'DR(aa, T)D™' for 0<|a—a,] <7

PROOF. By Main Theorem in [15], «, is an eigenvalue of 7. Then,
by Theorem 5.2 ibid., the assertions in the lemma except the last one
are obtained. The last assertion follows in the same way as in the
proof of Corollary 3 in [12]. /!

LEMMA 7. Let E be a Banach lattice and T<(F) be a positive
operator such that r(T')=1 and 1 is a pole of R(a, T') of order 1. Let
J={feFE; P|f]|=0} where P is the residual operator of R(«, T) at 1.
Then J is a T-imvariant closed ideal and the operator T induces the
operator T|J on E[J. The operator T[|J has the same spectral proper-
ties on I' as those T has, t.e.,

o(T|HNT'= o(T)NT,
P(T|5)NI'= P(T)NT,
R(T)HNT=R,(T)NT,
C(TyNT'= C(T)NT,

Jor ayel’, a, is a pole of R(a, T|J) +f and only if a, is a pole of R(a, T)
and the dimension of the eigenspace of T[J [resp. (T|J)] for a, is identi-
cal with that of T [resp. T'].

PrOOF. It is clear that J is a T-invariant closed ideal and
»(T,;)=1. By Corollary 2 of Lemma 2, 1 is a pole of R(«, T';) of order
at most 1 with the residual operator F,; which is the identically zero
operator. Therefore 1< p(T,;) which implies, by the well known
theorem of positive operator, »(T|;)<1. Consequently we get

o(Tiy)or.

From this result, together with Lemma 2 and its Corollary 2, the
conclusions of the lemma follow without difficulty. We have only to
notice the following fact: (E/J) is isomorphic to the set {p: o= E’,
©=0 on J} as a Banach lattice. /]

LEMMA 8. Let E be o Banach lattice and T < Q(F) be a positive
operator such that "(T)=1 and 1 is a pole of R(a, T') of order 1. Let
J be a closed T-invariant ideal including the etgenspace of T for 1. Then

14) For this lemma, see I. Sawashima [18], Lemma 4.
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the operator T,; has the same spectral properties on I' as those T has.

PROOF. We can prove this lemma in the same way as Lemma 7.
Notice only the following; fact: Any eigenfunctional ¢ of (T';) for

a,eI" can be extended uniquely to the eigenfunctional & of T' for
a,cI” by '

o=¢—(R(ay, (T/IY)(ap—T'9)[3)) o
where ¢ is any extension of ¢ to an element of E’, (ap—T"¢)/J is

defined by (ayp—T'¢)|d)or=ap—T'¢ and = is the canonical mapping
of E onto E/J. /1

4. Spectral properties on the spectral circle.

In this section we continue the notations of §2. Thus E=C(X)
and T'eL(E) satisfy conditions I), II), IIT) and IV) in the first para-
graph of §2 and so on.

Let Z be an arbitrary compact subset of an arbitrary compact
Hausdorff space Y. Then C(Z) is isomorphic to C(Y)/J as a Banach
lattice, where J={f=C(Y): fly)=0 on Z}, and also £L(C(Z)) is isomor-
phic to R(C(Y)/J) as an ordered Banach space under the above
isomorphism. Therefore, we shall hereafter identify C(Z) with C(Y)/J
and also identify ®(C(Z)) with &(C(Y)/J). For example, the operator
T, will be identified with the operator T/JS/1 and also with the operator
U,/Ls, where T, and U, are the operators defined in §2 and
Js,={feC(X): flx)=0 on S}} and I;={feC(X)): f(x)=0 on S;}. By
this identification, parts of Lemma 2 will be stated in the following
form.

PROPOSITION 8. 1) For iel, pu(T)Dp(U)2p(T). ii) For
acp.(T) and 2 4,

| R(a, THlI=|| B, UD ||| B(a, T)]].
From the equivalence of (i) and (ii) in Proposition 6 we get

COROLLARY. If acp T) and P is strictly positive, then
sup | R(e, T)|l=|| R(a, T)|l.

We also have

PROPOSITION 9. The following inclusion relation holds :
a(T)f\FD(UAo(UZ))“ﬂFD(UAo(TZ))‘f\F.
s =

PrROOF. Since p.(T) is open, we get from i) of Proposition 8
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Pm(T)ﬂFC(@pm(Uz))of\FC(Q‘Pw(Ta))Of\f-

ol TYNT =p(T)NT"

and
(N LU =(\ p(U))°NI
=4 PP,

are proved easily. Therefore

A(MNI () Ul () o(T))N T A

Hereafter we assume, in place of conditions III) and IV) for T,
the following condition :

IV’y 1 is a pole of R(a, T).

Then, since T is a contraction, Lemma 4 implies that 1 is a pole of
R(a, T') of order 1. §S. Karlin has shown in Theorems 4 and 5 in [6]
that, for a positive operator T'= &(E) with »(T)=1, T is uniformly
ergodic with nonzero limit operator P if and only if 1 is a pole of
R(a, T) of order 1 with the residual operator P. Owing to this fact,
we can make use of the results obtained in §2.

THEOREM 5. Let T be a positive, sub-Markov operator of (E) such
that 1 1s a pole of R(a, T'). Then the following relations hold :

o(TYNT =o(THNT,
P(T)N[ =P (TN,
RAT)N =R (TN,
CAT)YNT=C(T)NT.

where S is the set defined in p. 39, and T is the operator induced on
C(S) by T.

PROOF. Let P be the residual operator of R(e, T') at a=1 and let
J={f: P|f|=0}. Then, by Proposition 4, J={f: flx)=0 on S} and
hence all the assertions in the theorem follow from Lemma 7. [/

REMARK. If we replace condition IV’) by conditions IIT) and IV),
then the conclusions of the theorem do mnot hold.

Counter-example: Let X={1, 2, ..., co} be the one point compactifi-
cation of the discrete set N. Then f={f(1),...,f(n), ..., f()eC(X)
means that f(n) converges to f(co). Let Tf be the shift, i.e., Tf(n)
=f(n+1) for ne N and Tf(co)=f(). Then Pfis the constant function
f(o0). Therefore A consists of only one element ¢,=4, and hence
S=S;,={c0} and X3=X. It is easy to see that ¢(T)={a:|a|=1} and
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o(Ts)={1}.

Let A, be an arbitrarily chosen sequence of elements of 4. Denote
T,, P, and S, simply by T,, P, and S, respectively. Let m={{f,}:
foeC(S,), sup ||fall]<oo}. With linear structure and order defined

coordinatewise and norm defined by ||{f,}||=sup ||f.||, m is a Banach

lattice. Operators 7 and P will be defined by T{fn}.:{Tnfn} and
P{ fot={P,fn}. Let U be an arbitrary fixed ultrafilter on IV containing
no finite set. Put .

Jy={frtem: U-lim|| P|f,]]|=0}
where U —lim is the ultrafilter limit of <. Let E be the factor
space m/Jq. Since Jq; is easily seen to be T-invariant, the operator
T induces an operator on E which is denoted by T.

PROPOSITION 10.9 T is a positive irreducible operator of &E) with
fr(f’):l and 1 is a pole of R(a, T) of order 1. P induces on E an
operator, denoted by P, which is the residual operator of R(a, T) at 1.

PROOF. The positivity of T is clear. Let i:{lsn} and 1 be the
element of E corresponding to 7. Then TI=PI=1 is clear from
T.1s,=P,1s =15,. This implies »(T)=1 since ||T||<1 is also clear.

Let » be a positive number such that

o(T)D{a: O0<|a—1]|< 7},
then, by Proposition 8, the definition of T and Lemma 2, we get

0T, p(T)Dfa: 0<|a—1]<7}
and
sup ||(a—1)R(a, T)[|Zsup sup ||(a—1)R(a T,)]
=sup || (a—1)R(a, T)]|

Zsup ||(a—1)R(a, T)||

where A={a: 0<|a—1|<r/2}. Since 1 is a pole of R(a, T') of order
1, Sup ||(a—1)R(e, T)|| is finite. Therefore 1 is a pole of R(a, T) of
ordugr 1.

It is clear that P induces the operator Pon E which is the residual
operator of R(a, T) and that Tf=f if and only if ?f: 7. Let
{fo.}em be mapped to an eigenvector f of T for 1 by the canonical

15) For this, see T. Ando [1] and H.P. Lotz und H.H. Schaefer [117], Theorem 1.
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mapping = of m onto m/J,. Then f=={P,f,}. The irreducibility of
T, implies P,f,=r,1s, where r,=25 (f,). Put y=U—limy, Then
U—lim||P|7,1s,—71s,DI|=U —lim|y,—7|=0,
since U —lim is a lattice homomorphism. Thus f=71 which proves
that the eigenspace of T for 1 is one dimensional with the base 1.
Let J be a nonzero T-invariant closed ideal of E and 7 be a
nonzero positive element of J. Then f’f:rf is a nonzero element of
J. This implies IeJ. For any element 5 of £ we can show easily
that there exists a positive number ¢ such that |g]<c¢I'® and hence
geJ. Therefore J=F. Thus T is irreducible. ]

COROLLARY. If r is a positive number such that

{a: O<]a—1|<rico(T),
then

{a: 0<|a—1]|<rcp(T).
THEOREM 6. Let E be the space C(X), and T (E) be a positiq)e
sub-Markov operator and 1 be a pole of R(a, T). If A is the set of ex-

treme points of the set of imvariant probability measures on X and S,
18 the support of A A, then

o(T)NT=(\J o(T)) NI
VY
where T, is the operator induced on C(S;) by T.
PROOF. By Theorem 5 and the relation S,CS, we can assume
X=S, i.e., P is strictly positive. By Proposition 9, the inclusion

U(T)f\rD(x\:{iU(Tz))‘ﬂP

is clear. To prove the inverse_inclusion which is equivalent to
p(T)D(Qip(Tz))OﬂF,

let «, be in (xfe\A p(THy)enr'.

First we notice that it is enough to show that {|| R(a, T))||: A€ 4}
is bounded : Lemma 38 shows that sup || B(ea, T))|| is bounded on a set
€4

{a: |a—ay|<d} for a positive number d. Corollary of Proposition 3
shows that || E(«, T)|| is bounded by the same upper bound on the set
{a: Ja—a,|<d, |a|>1}. This implies a,& p(T).

16) Moreover, E is isomorphic as a Banach lattice to C(R) for some compact

Hausdorff space 2 and 1 is mapped under this isomorphism to the identity element
1 of C(2).



December 1973 Reduction of a Sub-Markov Operator 53

We shall show in the following four steps that the assumption of
unboundedness of the set {|| R(«a, T;)||: 2 4} yields a contradiction.

The first step: Let r, r, and b be positive numbers satisfying
{a: Ja—a)|<ricM po(T))s
) icd

{a: 0<]a—1|<r}Cp(T)
and
sup | B(e, TYI—P)||=b.

Let r be a positive number less than 7, r, and 1/32b. By assumption,
there exists a sequence 1, of 4 such that || R(e,, T,)||>n where T is
denoted by T,. We shall show that the circle {a: |a—a,|=7} contains
at least one point «, such that {||R(a, T,)||: n= N} is unbounded. If
not, then sup || B(a, T,)|| is finite for any « on the circle. This, together

with Lemma 3 and the compactness of the circle, implies that
sup || R(a, T,)]| is bounded on the circle. Since

(a: la—alsnc\ (T,

and R(a, T,) is holomorphic in this disk, sup || R(«,, T,)]| is finite which

is a contradiction. Therefore we can assume without loss of gener-
ality that the following relations hold.

| R(ay, To)ll>n  for any n, (13)
| R(eey, T)|l>n  for any n. (14)

The second step: Let, for E,=C(S, ) and T, chosen above and for
an arbitrary ultrafilter U containing no finite set, Jg, E, T and P
be those defined before Proposition 10. Then this proposition, together
with its corollary, shows that T is a positive and irreducible operator
of QE) and 1 is a pole of R(a, TN’) and

{a: O<ja—1|<ryco(T).

The third step: We shall show that «, and «, belong to Pa(ff).
Relation (14) in the second step yields the existence of f, and g, in
E, satisfying

Ifll=1, Tufa=a.fotga

and

ga ]l <——. | (15)
n

These imply

Tnfn:aofn+(a1—a0)fn+gn
and



54 I. SawasHIMA and F. NIIRO NSR. U.0., Vol. 24

1
{(a— a0+ all Slas— gl +ll g, 1| <7+ ——.

Therefore, for n> i,

r

b
T, fr—afoll <2r<—,
[ Tt n—aofall 16

where r and b are those defined in the first step. Appealing to Lemma 5,
we see

HPnIfnlII;%— for m>_ L

r

- Since U is a ultrafilter containing no finite set, the above inequality
implies {f,}e&Jy. Relation (15) implies {g,}=J,. These imply, by
definition of T, a,e P(T). a,=P(T) can be proved from (13) in a
similar way as above.

The fourth step: Applying Lemma 6 to the results obtained in
the second step and the fact o, P,,(T), we see that p(T ) includes the
set {a: 0<]|a—a,|<7}. This contradicts alePa(T), since

'[a1'—aol:r<7'2' //
As a direct consequence of Theorem 6 and Proposition 9, we get

THEOREM 6’. Let the assumptions for T be as in Theorem 6 and
let, for 2e 4, X,={xcsX: Pley=2} and U, be the operator induced on
C(X;) by T. Then

a(T)ﬂF:(gia(Ul))‘f\F.

REMARK. The conclusion of Theorem 6 can not be replaced by

o(T)f\F:((}EjA a(T)HNI).

Counter-example : Let X:[—-—;, é—] and
Tf@)y=|x|f(z)+(1—|z)A—).
Then we can prove

. _ (a—[z)fw)+A—|z)A—2)
(Rla, T)f o)== 2B o 2R,

for acp(T).
From this we see that ¢(T')={1}\U[—1, 0] and 1 is a pole of R(«a, T')
of order 1 whose residual operator P is given by
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(B)@) =)+ H ).
Then

PE={fe(C(X): f(x)=A—)},
P is strictly positive and X=X,

P'€z=~;—(5z+€—x) for zeX.

Thus 4 is homeomorphic to [0, _;_] by the correspondence

1=t

- 1
" 7(‘sy—}—‘s_y) for ye[O, —2—]

It is easy to see
o(T,)={1}ui2y—1} for O<y§_;_

and

G(le):{l} for y:O.
Therefore

o(TYNI={1}U{—-1}
and

(\J o(T)NI)y~={1}.
224

55

From the proof of Theorem 6 we get the following propositions
of which Proposition 11 is a special case of Theorem 4.10 in H.P.
Lotz [10]. In the proof of these propositions we may assume, by

Theorem 5, that P is strictly positive.

PROPOSITION 11. Let T satisfy the assumptions of Theorem 6 and

let r, be a positive number such that

{a: O<]a—1|<r}co(T).

Then o(TYNI is a set consisting of a finite number of elements. More

precisely we have
AT)NTc\) n\_jlexp( 2icz ),
n

n=1 k=0

where m 1s the smallest natural number satisfying

271 >l ’
1-— .
I exp( | <1,

PRrROOF. Let a,c0(T)NI" and a,+1. Then there are two cases:

1) a,eN\p(Ty) and 2) ae\Ja(T)).
pEp isd

In the first case 1) we see, along the proof of Theorem 6 concerning
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a, that sup || R(«, T,)|| is not finite and that there exists a positive
A4

irreducible operator 7 such that T(T):l is a pole of R(e, 17'),'

{a: |a——1|<’7‘2}Cp(T) and a,= a(T). Then, by Main Theorem in [15],
we get

aO:exp< 2krt >’
7

where k<n—1, k, ne N and k is relatively prime to » and hence

exp( i > e a(T).
n

Therefore ‘1 —exp( 2 )Igrz and consequently n<m.
n

In the second case 2) there exists 14 such that a,e0(T;) and
{a: |a—1]|<r}cp(T;) where the latter relation is obtained from Pro-
position 8. Hereafter the proof is the same as in case 1) and we get

2knt

%:exp( >, kE=n—1 and n=m.

Thus the proposition is proved. [/

COROLLARY. Let T satisfy the assumptions of Theorem 6. Then
there exists a compact set in the complex plane with the following
properties : ’

iy Ccla: |a|<1},

il) CNI consists of a finite number of elements,
iii) o(T)cC, |
iv) for any 24, o(T;)cC and o(U,)cC.

PROOF. Let C=p.(T)*. Then Proposition 11 implies that C satis-
fies i), ii) and iii) and Proposition 8 implies that C satisfies iv). [/

REMARK. An extension of this corollary will appear in F. Niiro
and I. Sawashima [16]. See also Karpelevich [7].

Counter-example in the remark of Theorem 6 shows that o(T)NI"
does not consist of poles. However we have

PROPOSITION 12. Let T satisfy the assumptions of Theorem 6 and
let ayel” be an isolated point of o(T)". Then a, is a pole of R(a, T)
of order 1 and «, is in \ ) o(T)).

A

17) Compare the following fact: An element ap in o(T) NI is, by Proposition 11,
an isolated point of ¢(T)NI- o
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"PROOF. By assumption there exist positive numbers r, and 7, such

that

{a: 0<[a—ao[<'r1}Cp(T)
and

{a: O<ja—1|<r}cp(T).
Let

A={1eA: ayep(T))
and '

Ady=MN\A, =2 d: ayea(T))}.
Then, Theorem 6 implies 4,#¢, namely a,c= Utf(Tz) By the same
reasoning as in the proof of Theorem 6 we see that sup | B(ay THI
is a finite number which will be denoted by ¢. Let r be a pos1t1ve

number less than #, 7, and L Then, by Corol]ary of Proposition 8,

¢
we get
sup |a—oy| || R(e, T)|
o<l a—ag I<r
= sup supla a,| || B(e, T))||
o<la—apl<r A€4
=Max{ sup sup]a o, || R(er, 1)”: sup Supla | || R(exr, T3]}

W<la—agllr 2€ <l a—ag|<r A€

By Lemma 3, we get

sup  sup |a—af || B(a, T))]| <
0<ta—agl<r 2€4; l—ecr
By Lemma 6, we get

sup  sup ja—ay| || R(a, T})||
o<l a—ag|<r AcAdy
= sup sup i—l,“R(a Tz)
o< —1]<r 2e42 ' o
= o))
&, 29

where the last ineqmality is obtained from Proposition 8. Since 1 is a
pole of R(a,T) of order 1 and

= sup
o< |- —1]<r

is finite, sup |a—a,|||R(a, T)]|

1 —CTr 0| @—ao I<r
is finite and the proposition is proved. | i

Combining '\Propositions 11 and 12, we get

THEOREM 7. Let E be the space C(X), T be a positive sub-Markov
operator of ¥YE) and 1 be a pole of R(a, T). Then any element «, of
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a(TYNTI is an isolated point of o(TYNI'. If a, is an isolated point of
o(T), then a, 18 a pole of R(a, T) of order 1. If a, is not an isolated
point of o(T), then a, 18 a limit point of o(T)N{a: |a]<1}.

REMARK. H. H. Schaefer raised in [19] the problem: under what
conditions does a(T)NI" consist of poles of R(a, T') provided 1 is a
pole of R(a, T). Theorem 7 may be regarded as an answer in some
sense to his problem. See also F. Niiro and I. Sawashima [15] p.

182-183.
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