Note on Regular K-c ntact 3-structures

Mariko Konishi

Department of Mathematics, Ochanomizu University and Tokyo Institute of Technology (Received February, 28, 1973)

In a previous paper [4] we studied fibred Riemannian manifolds with Sasakian 3-structure. That is a fibred Riemannian manifold $(\tilde{M}, M, \pi; \tilde{g})$ such that \tilde{M} has a Sasakian 3-structure and their associated 3 vector fields are tangent to each fibre $\pi^{-1}(p)$ $(p \in M)$. Then it has been shown in [2] that the base manifold M has a quaternion Kaehler structure.

More generally, if \widetilde{M} is a fibred Riemannian manifold with K-contact 3-structure, an almost quaternion structure can be induced in the base manifold. In this note, we show that if the structure induced in M is a quaternion Kaehler structure, then the K-contact 3-structure in \widetilde{M} is necessarily Sasakian 3-structure.

§1. Preliminaries

First we recall definitions and some fundamental properties of a fibred Riemannian manifold with K-contact 3-structure (cf. [3, 4]). Let $(\widetilde{M}, \widetilde{g})$ be a Riemannian manifold and ξ , η , ζ be three unit Killing vector fields which are mutually orthogonal and satisfy

(1.1)
$$\xi = \frac{1}{2} [\eta, \zeta], \quad \eta = \frac{1}{2} [\zeta, \xi], \quad \zeta = \frac{1}{2} [\xi, \eta].$$

Such a set $\{\xi, \eta, \zeta\}$ is called a triple of Killing vectors, for simplicity. We put

(1.2)
$$\phi = \widetilde{\mathcal{V}}\xi, \quad \psi = \widetilde{\mathcal{V}}\eta, \quad \theta = \widetilde{\mathcal{V}}\zeta,$$

 $\widetilde{\mathcal{V}}$ being the Riemannian connection of $(\widetilde{M}, \widehat{g})$. Assume that the sectional curvature of $(\widetilde{M}, \widetilde{g})$ with respect to any section containing at least one of ξ , η and ζ is equal to 1, then $(\phi, \xi, \widetilde{g})$, $(\phi, \eta, \widetilde{g})$ and $(\theta, \zeta, \widetilde{g})$ are all K-contact structures. Assume further that

$$egin{aligned} heta \psi = \phi + eta \otimes \zeta, & \phi \theta = \psi + \gamma \otimes \xi, & \psi \phi = \theta + \alpha \otimes \eta, \\ \psi \theta = -\phi + \gamma \otimes \eta, & \theta \phi = -\psi + \alpha \otimes \zeta, & \phi \psi = -\theta + \beta \otimes \xi, \end{aligned}$$

 α , β and γ being 1-forms associated with ξ , η and ζ , respectively. Then we call $\{\xi, \eta, \zeta\}$ a *K-contact 3-structure*. In particular, if ξ , η , ζ define Sasakian structures, $\{\xi, \eta, \zeta\}$ is called a *Sasakian 3-structure*.

Let $(\widetilde{M}, M, \pi; \widetilde{g})$ be a fibred Riemannian manifold with triple of Killing vectors $\{\xi, \eta, \zeta\}$. That is, a fibred Riemannian manifold such that \widetilde{M} admits a triple of Killing vectors $\{\xi, \eta, \zeta\}$ and each fibre is a maximal integral manifold of the distribution spanned by ξ , η and ζ . In the sequel we denote $(\widetilde{M}, M, \pi; \widetilde{g})$ by $(\widetilde{M}, \widetilde{g})$ for brevity.

If a vector field is tangent to each fibre, then it is called a *vertical* vector field. If a vector field is orthogonal to each fibre, then it is called a horizontal vector field. A 1-form ω is called horizontal if $\omega(\xi) = \omega(\eta) = \omega(\zeta) = 0$. And a horizontal tensor field of any type is defined in the usual way (cf. [3, 4]). We define the horizontal part \tilde{T}^H of any kind of tensor field \tilde{T} following [3, 4].

A tensor field \widetilde{T} in \widetilde{M} is projectable, if it satisfies

$$(\pounds_{\widetilde{X}}\widetilde{T}^{H})^{H}=0$$
 for any vertical vector field \widetilde{X} ,

where $\pounds_{\widetilde{X}}$ denotes the Lie derivative with respect to \widetilde{X} . Then \widetilde{T} is projectable if $\pounds_{\xi}\widetilde{T}=\pounds_{\eta}\widetilde{T}=\pounds_{\zeta}\widetilde{T}=0$. If \widetilde{T} is projectable, we can define a tensor field in M, which is called the projection of \widetilde{T} and is denoted by $p\widetilde{T}$. The Riemannian metric \widetilde{g} is projectable, since $\pounds_{\xi}\widetilde{g}=\pounds_{\eta}\widetilde{g}=\pounds_{\zeta}\widetilde{g}=0$. So we adopt g (= $p\widetilde{g}$) as a Riemannian metric in the base manifold M. We can see that the Riemannian connection Γ in M is identical with the connection induced by π from $\widetilde{\Gamma}$ (cf. [4]).

Given a vector field X in M. Then there is a unique horizontal projectable vector field X^L , called the lift of X, such that $d\pi(X^L) = X$, $d\pi$ being the differential of π . Let there be given a tensor field \widetilde{F} (not necessarily projectable) of type (1,1) in \widetilde{M} . We take a coordinate neighborhood U of M and a local cross section $\tau: U \to \pi^{-1}(U)$, where $\pi \circ \tau$ is the identity. We now define a local tensor field F_{τ} in U by

$$(F_{\tau}X)_p\!=\!d\pi(\tilde{F}X^{\scriptscriptstyle L})_{\tau^{(p)}}\!, \text{ for any } p\!\in\!U,$$

X being an arbitrary vector field in U. Then tensor field F_{τ} thus constructed in U is called the projection of \tilde{F} in U with respect to the cross section τ .

§2. Quaternion Kaehler structure.

Let $(\widetilde{M}, \widetilde{g})$ be a fibred Riemannian manifold with triple of Killing vectors $\{\xi, \eta, \zeta\}$. We define ϕ, ψ and θ by (1.2). Then we have

LEMMA 1. A triple of Killing vectors $\{\xi, \eta, \zeta\}$ is a K-contact 3-structure if and only if

(2.1)
$$(\phi^{H})^{2} = (\phi^{H})^{2} = -I^{H}$$

$$\theta^{H} \phi^{H} = -\phi^{H} \theta^{H} = \phi^{H}, \quad \phi^{H} \theta^{H} = -\theta^{H} \phi^{H} = \psi^{H}$$

$$\phi^{H} \phi^{H} = -\phi^{H} \phi^{H} = \theta^{H}$$

hold, where I is the identity tensor field (see Proposition 3.3 and 3.5 in [3]).

In the sequel $\{\xi, \eta, \zeta\}$ is assumed to be a K-contact 3-structure. Then we have seen in [3]

$$\begin{split} (\pounds_{\xi}\phi^{H})^{H} &= 0, & (\pounds_{\eta}\phi^{H})^{H} = -2\theta^{H}, & (\pounds_{\zeta}\phi^{H})^{H} = 2\phi^{H} \\ (2.2) & (\pounds_{\xi}\phi^{H})^{H} = 2\theta^{H}, & (\pounds_{\eta}\phi^{H})^{H} = 0, & (\pounds_{\zeta}\phi^{H})^{H} = -2\phi^{H} \\ (\pounds_{\xi}\theta^{H})^{H} &= -2\phi^{H}, & (\pounds_{\eta}\theta^{H})^{H} = 2\phi^{H}, & (\pounds_{\zeta}\theta^{H})^{H} = 0. \end{split}$$

We now consider local tensor fields F_{τ} , G_{τ} and H_{τ} which are the projections of ϕ , ψ and θ with respect to a local cross section τ in the sense of § 1. That is, F_{τ} , G_{τ} and H_{τ} are defined as

$$(F_{\tau}X)_{p} \! = \! d\pi (\phi X^{\!\scriptscriptstyle L})_{\tau(p)}, \quad (G_{\tau}X)_{p} \! = \! d\pi (\phi X^{\!\scriptscriptstyle L})_{\tau(p)}, \quad (H_{\tau}X)_{p} \! = \! d\pi (\theta X^{\!\scriptscriptstyle L})_{\tau(p)}.$$

Then we easily find

$$\begin{split} &F_{\tau}^{\;2}\!=\!G_{\tau}^{\;2}\!=\!H_{\tau}^{\;2}\!=\!-I\\ &G_{\tau}F_{\tau}\!=\!-F_{\tau}G_{\tau}\!=\!H_{\tau},\quad H_{\tau}G_{\tau}\!=\!-G_{\tau}H_{\tau}\!=\!F_{\tau}\\ &F_{\tau}H_{\tau}\!=\!-H_{\tau}F_{\tau}\!=\!G_{\tau}, \end{split}$$

because of Lemma 1 (cf. [2]).

If we take various local cross sections, we can construct in M, an almost quaternion metric structure $\{F_{\tau}, G_{\tau}, H_{\tau}\}$ together with the metric g (cf. [1]). And by means of (2.2)

$$\tilde{\Lambda} = \phi \otimes \phi + \psi \otimes \psi + \theta \otimes \theta$$

is a projectable tensor field of type (2.2) in \widetilde{M} , and its projection $p\widetilde{A}$ coincides with

$$\Lambda = F_{\tau} \otimes F_{\tau} + G_{\tau} \otimes G_{\tau} + H_{\tau} \otimes H_{\tau}.$$

for any local cross section τ . An almost quaternion structure $\{(F_{\tau}, G_{\tau}, H_{\tau}), g\}$ is a quaternion Kaehler structure if and only if

$$V(2.5)$$
 $V\Lambda = 0$

(cf. $\lceil 1 \rceil$).

§3. Condition to induce a quaternion Kaehler structure.

Let $(\widetilde{M}, \widetilde{g})$ be a fibred Riemannian manifold with K-contact 3-structure $\{\xi, \eta, \zeta\}$. We define ϕ , ϕ and θ by (1.2). We are now finding

a condition that the induced almost quaternion structure is a quaternion Kaehler structure.

First we have

LEMMA 2. A necessary and sufficient condition that ϕ , ψ and θ induce a quaternion Kaehler structure in the base manifold M is that

$$(3.1) \qquad (\tilde{\mathcal{V}}\tilde{\Lambda}^H)^H = 0$$

holds in \widetilde{M} .

This is clear from the definitions and (2.5).

We take coordinate neighborhoods $\{\tilde{U}, x^h\}$ of \tilde{M} and $\{U, v^a\}$ of M such that $\pi(\tilde{U}) = U$. Then π can be expressed by

$$v^a = v^a(x^h)$$

For a fibre F $(F \cap \widetilde{U} \neq \phi)$, we introduce coordinates (u^{α}) such that (v^{α}, u^{α}) is a system of coordinates in \widetilde{U} . In the usual way, we take a local coframe $\{E_b, C_{\beta}\}$ in \widetilde{U} and the coframe $\{E^a, C^{\alpha}\}$ dual to $\{E_b, C_{\beta}\}$. That is, E^a has components $E_i{}^a = \partial v^a/\partial x^i$ and $C_{\beta} = \partial/\partial u^{\beta}$.

Then the horizontal part of any tensor field in \widetilde{M} , say \widetilde{T} of type (1.2), can be represented by

$$\tilde{T}^{H} = T_{cb}{}^{a}E^{c} \otimes E^{b} \otimes E_{a},$$

where $T_{cb}{}^a$ are local functions in \widetilde{U} . We put

$$\begin{split} &\widetilde{g} = g_{cb} E^c \otimes E^b \\ &\phi^H = \phi_c{}^b E^c \otimes E_b, \quad \phi^H = \phi_c{}^b E^c \otimes E_b, \quad \theta^H = \theta_c{}^b E^c \otimes E_b, \\ &(\widetilde{\mathcal{V}} \phi^H)^H = (\mathcal{V}_d \phi_c{}^b) E^d \otimes E^c \otimes E_b, \quad (\widetilde{\mathcal{V}} \psi^H)^H = (\mathcal{V}_d \psi_c{}^b) E^d \otimes E^c \otimes E_b, \\ &(\widetilde{\mathcal{V}} \theta^H)^H = (\mathcal{V}_d \theta_c{}^b) E^d \otimes E^c \otimes E_b. \end{split}$$

then we have

$$(\widetilde{\mathcal{V}}\widetilde{A}^{\scriptscriptstyle{H}})^{\scriptscriptstyle{H}} = \{ \mathcal{V}_{e}(\phi_{\scriptscriptstyle{d}}{}^{\scriptscriptstyle{c}}\phi_{\scriptscriptstyle{b}}{}^{\scriptscriptstyle{a}} + \psi_{\scriptscriptstyle{d}}{}^{\scriptscriptstyle{c}}\psi_{\scriptscriptstyle{b}}{}^{\scriptscriptstyle{a}} + \theta_{\scriptscriptstyle{d}}{}^{\scriptscriptstyle{c}}\theta_{\scriptscriptstyle{b}}{}^{\scriptscriptstyle{a}}) \} E^{\scriptscriptstyle{e}} \otimes E^{\scriptscriptstyle{d}} \otimes E^{\scriptscriptstyle{b}} \otimes E_{\scriptscriptstyle{c}} \otimes E_{\scriptscriptstyle{d}}.$$

The condition (3.1) can be written by

$$(3.2) (\nabla_{e}\phi_{d}^{c})\phi_{b}^{a} + \phi_{d}^{c}\nabla_{e}\phi_{b}^{a} + (\nabla_{e}\phi_{d}^{c})\phi_{b}^{a} + \phi_{d}^{c}\nabla_{e}\phi_{b}^{a} + (\nabla_{e}\theta_{d}^{c})\theta_{b}^{a} + \theta_{d}^{c}\nabla_{e}\theta_{b}^{a} = 0.$$

Transvecting (3.2) with ϕ_c^d and taking account of Lemma 1, we see that $(\tilde{\mathcal{V}}\phi^H)^H$ is linear combination of ϕ^H and θ^H . Similarly, we see that $(\tilde{\mathcal{V}}\phi^H)^H$ and $(\tilde{\mathcal{V}}\theta^H)^H$ are linear combinations of ϕ^H , ϕ^H and θ^H . That is, we get

LEMMA 3. The condition (3.1) is equivalent to that

$$(\tilde{\boldsymbol{\mathcal{V}}}_{\widetilde{\boldsymbol{\mathcal{X}}}}\phi^{\scriptscriptstyle H})^{\scriptscriptstyle H} = c(\tilde{\boldsymbol{\mathcal{X}}})\phi^{\scriptscriptstyle H} - b(\tilde{\boldsymbol{\mathcal{X}}})\theta^{\scriptscriptstyle H}$$

$$(3.3) \qquad (\tilde{\mathcal{V}}_{\widetilde{X}}\phi^{H})^{H} = -c(\tilde{X})\phi^{H} + a(\tilde{X})\theta^{H}$$

$$(\tilde{\mathcal{V}}_{\widetilde{X}}\theta^{H})^{H} = b(\tilde{X})\phi^{H} - a(\tilde{X})\phi^{H}$$

holds for certain horizontal 1-forms a, b, c.

If we define 2-forms Φ , Ψ and Θ by

$$\Phi(\widetilde{X}, \ \widetilde{Y}) = \widetilde{g}(\phi\widetilde{X}, \ \widetilde{Y}), \quad \Psi(\widetilde{X}, \ \widetilde{Y}) = \widetilde{g}(\phi\widetilde{X}, \ \widetilde{Y}), \quad \Theta(\widetilde{X}, \ \widetilde{Y}) = \widetilde{g}(\theta\widetilde{X}, \ \widetilde{Y}),$$

then Φ , Ψ and Θ are all closed forms, i.e.,

$$d\Phi = 0$$
, $d\Psi = 0$, $d\Theta = 0$,

and hence

Substituting the relation (3.3), into (3.4), and contracting with $\psi^{cb} = g^{ca} \phi_a^b$, we get

(3.5)
$$\phi_a^a b_a = (1 - 2m)c_d,$$

where $b=b_aE^a$, $c=c_aE^a$ and $4m=\dim M$. Next, contracting (3.4), with $\theta^{cb}=g^{ca}\theta_a{}^b$, then we have

$$\phi_d^{\ a}c_a = -(1-2m)b_d.$$

Since $(\phi^H)^2 = -I^H$, (3.5) and (3.6) lead us to

$$c_d = 0$$
.

In the similar way, we have $a \equiv 0$, $b \equiv 0$. That is, we conclude that

$$(\widetilde{\mathcal{V}}\phi^H)^H = 0, \quad (\widetilde{\mathcal{V}}\phi^H)^H = 0, \quad (\widetilde{\mathcal{V}}\theta^H)^H = 0.$$

From Lemma 3.7 in [3], ϕ , ψ and θ are seen to be all Sasakian structures. Thus we get

THEOREM. Let $(\widetilde{M}, \widetilde{g})$ be a fibred Riemannian manifold with triple of Killing vectors $\{\xi, \eta, \zeta\}$. In the base manifold M, a quaternion Kaehler structure can be induced from $\{\xi, \eta, \zeta\}$, when and only when $\{\xi, \eta, \zeta\}$ defines a Sasakian 3-structure.

Bibliography

- [1] S. Ishihara, Notes on Quaternion Kaehler manifolds, to appear in J. Diff. Geometry.
- [2] S. Ishihara, Quaternion Kaehler manifolds and fibred Riemannian space with Sasakian 3-structure, to appear in Kōdai Math. Sem. Rep.
- [3] S. Ishihara and M. Konishi, Fibred Riemannian space with triple of Killing vectors, to appear in Kōdai Math, Sem. Rep.
- [4] S. Ishihara and M. Konishi, Fibred Riemannian space with Sasakian 3-structure. Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 179-194.