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Introduction. A differentiable manifold of odd dimension 2n-1
is called to be contact if it has a 1-form 5 such that the 2-form d» has
the maximal rank on the space. In relation with the almost contact
metric structure, many results of contact spaces were known. When
the dimension of the space M is 2n, M is called an even dimensional
contact space if it admits a 1-form 7 such that dz has the maximal
rank on M. Then there exists naturally an almost Kéhlerian structure
(9, ¢) such that gop=dy. By the condition of linear isotropy groups of
the holonomy groups, S. Sasaki [1] gave a sufficient condition that this
almost Kéhlerian structure is integrable.

On the other hand, Y. Muto [4] studied the almost Kéhlerian space
in which the fundamental 2-form is given by dy, 7 being a Killing 1-form.
This structure is a special case of even dimensional contact spaces. In
this paper, we call such a space to be e-K-contact in short. Then we
show that there naturally exists an integrable distribution, and that
each intégral submanifold admits ordinary (odd dimensional) K-contact
structure. Our main purpose is to give sufficient conditions for an
e-K-contact space to be isometric with a Euclidean space.

1. Let M be an N-dimensional symplectic space with the funda-
mental 2-form ¢ and N=2(n+1). Then we can take a positive definite
Riemannian metric tensor g and an almost complex structure tensor ¢
which satisfy

(1.1) go¢:(/),

since the rank of ¢ is maximal (Y. Hatakeyama [6]). We assume that
M has a 1-form » which satisfies ' :

(1.2) ¢=dn,
that is, M is an even dimensional contact space. The associated vector

field of the 1-form % is denoted by 7* and we write ¢ the length of ##,
which is a non-negative scalar function of M. Let M, be the set of zero
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points of 7% then it coincides with the set of zero points of ¢. We
define & =¢7* and denote by & the associated 1-form of &. Clearly the
length of &* is equal to o on M. We set M'=M— M, then we can take
unit vectors e, and e, on a neighbourhood in M’ such that

We take an orthonormal frame field e, ..., e, and e, ..., e, and ey, e

where ¢, =d¢e;, and the frame {e,} is called an adapted one. Denote its
dual basis by {w,}. Then w, and w, satisfy

CUA:—l—ﬁ and Q)A*:LE.
o (13

We shall denote the Riemannian connection on M’ by

dP=w,e,,
(1.3)

de = w4503, @45+ wp,=0.
Then the structure equations are
dw,=w45 \ 03,
dwp=w40 ,/\ Wop+ 245,

where £2,, denotes the curvature form.
The almost complex structure ¢ is a vector valued 1-form, and can
be written on M’ as

(1.4) b= — Wby + @, -
The fundamental 2-form ¢ is also written as
(1.5) P=—w, AWy
Putting w,,=a 0wz We have
dyp=d(ow,)=do Aws+cdw,
= 00,05 N\ Wyt 0@y Ny + (U g — g f) O g N Dy
— 0y 0y NWy+ Ao Ny

By virtue of (1.5), we get

The ranges of indices are as follows:
A,B,C...=1,...,n, 1%, ..., n* 4, 4%,
Aty ve.=1,...,n, 1% ., n¥ 4,
a, B, r..=1..,n 1% ., n¥% at=a+n (mod 2n),
a,b,c...=1,...,n,4,
i,7,k...=1,..,n
‘We assume the summation convention for all indices.

-~
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ay;— =0, Qirjr— Gjrin =0,
(1.6) aadﬁ—ad*d:()’ . JaaA—O'a:O,
0(Qyjo—Qji) =055, —0Qg4+04=1,

where we put do=o,0,. Conversely, if there exist a scalar function ¢
and connection forms w,, w,; which satisfy the relation w,,=a,w; with
the condition (1.6), then the 1-form y=ocw, satisfies

dn= — Wy A\ Wgs.
Thus M’ becomes an even dimensional contact space, where M’ is an
open submanifold of all points p such that ¢(p)+0.

In an even dimensional contact space M, we assume that »* is a
Killing vector fleld, and we call such a space to be Killing contact
(e-K-contact, in short). The condition that »* is Killing is that the Lie
derivative of the metric tensor g with respect to »* vanishes, and hence
we have ‘

0(7h9(X, Y)=9((n"X, Y)+g(X, 0(7")Y)

for vector fields X, Y, where 6(3*) denotes the Lie derivative. Using
the equation O(p)X=F .X—V 7%, we get

9V x 7%, Y)+9(X, Vy7*) =0.
Then we have

2dp(X, Y)=X-9(Y) =Y -p(X)— (X, Y])

=29(X, Iy 7).
By assumption (1.2), we see that

is valid on M’. Moreover, from (1.3) we have
d(oe )=doe,+adey,
:d034+0(0)Aa3a+wdd 6.4*)~

Comparing this equation with (1.4), we get

1 1
Wy —— Wy Wy = — — Wy,
‘ o o
(1.8)
Wy = —— Wy
o
and
(1.9) C!)Ak:do'.

Conversely if there exist a scalar function ¢ on M and the connection
forms w,, w,, which satisfy the relations (1.8) and (1.9) with respect to
an adapted basis {¢,}, then we have for the vector field 7*=oe,
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A9t = Werly — Wy Cys.

Thus the relation ¢= —d»* holds good and #* is Killing. This shows
that M’ is e-K-contact.

2. In this section we suppose that M is an N-dimensional complete
e-K-contact space (N=2n-+2). As for the notations we obey to the
preceding section.

LEMMA 2.1. In an e-K-contact space, the vector field e, is parallel

along the orbits of ey, that is, Ved*eA:O.

"PROOF. From (1.8), we have -
Vedked = L wi*(eA*)eiv—' 1 (’D;(ed*)ei" - i w(eg)e,=0.
g g g

We consider a distribution defined by w,,=0 on M’. By virtue of
(1.9), this distribution is completely integrable, and there exists a
maximal integral submanifold B (p) through any point p of M’, where
c=0(p). Then B,(p) is a (2n+1)-dimensional manifold, and the scalar
function ¢ is constant on it. B, (p) has the Riemannian metric and the
connection which are induced from those of M’.

THEOREM 2.2. Each of B,(p) admits the induced K-contact structure,.
that s, there exists a contact form which 1is Killing and of constant
length, and the sectional curvature for planes containing the associated.
vector 1s equal to 1/d°

PROOF. We can take {¢;} and {w,} as an orthonormal frame and its:
dual basis on a neighbourhood of p on B,(p). Then the induced connec-
tion d’ on B, (p) is given by

d’P:wlez,
(2.1
d,ezza)xﬂe‘u
where w,, is considered under the condition that ¢ is a constant value.
o(p). We have from (1.8)
1

d,eA == —Cl).,;*,ei —_— — a)iei*.
o ag

Hence if we define the tensor field ¢’ of type (1.1) by
(2.2) ¢ =—d'(se,) = —wpe;,+w;e,
then we obtain that

¢'ey=0, de;,=e;, dle=—e,,

F(X) = — X+ (X)e,.

(2.3)



op

March 1973 On Special Almost Kéhlerian Spaces 53

Since the induced metric ¢’ on B,(p) is given by d's’=3 w;?, we have
2
(2.4) 9(¢X, ¢’ X)=9'(X, X) — 04X’

for the tangent vector X of B (p). Thus (¢/, e, ¢') defines the almost
contact metric structure on B, (p). Moreover the fundamental 2-form
P'=g ¢/ =—w; No,. is given by

¢ =d(0w,).

By virtue of (2.2), e, is a Killing vector field on B, (p), and therefore
the almost contact metric structure is K-contact. Since the vector ge,
is of length ¢ on B,(p), we see that the sectional curvature for a plane
containing the vector e, is equal to 1/

Now we express the forms w,, on M’ as w,,=b,,@,. Differentiating
(1.9), we have

O=wyAw;=bw, o,

=005 A @y D, 4:0 40 N Oy +Dy g0 4 N @,

It follows that

b .=b

af = par
(2.5)

b(xA:butA :0
From (1.8),, we have b,,=1/s. The quantity b,, corresponds to the
second fundamental tensor of the hypersurface B (p) with respect to
the normal vector e, .

LEMMA 2.3. On an e-K-contact space M, the vector field e,. s auto-
parallel, that is, the orbits of e, are geodesics.

PRrROOF. It is evident from (1.8) and (2.5).

Through any point p of M/, there exist an integral submanifold
B (p) and an orbit of e, which intersect to each other orthogonally.
We show the following

LEMMA 2.4. A connected orbit of the vector field e,. through p of

- M' can intersect only once with the hypersurface B (p).

PROOF. As the space is complete, the orbit c¢(t) of e, can be
extended for infinitely large value of its arc length ¢. The length ¢ of
the vector field »* can be considered as a function of variable ¢ along
the orbit. Since w, =dg, it holds that ¢/(t)+0 on ¢(t), and hence the
function ¢ is a monotonous function of ¢t. From the fact that ¢ is
constant on B (p), we conclude that the orbit ¢(¢) can not intersect with
the hypersurface B (p) again.
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THEOREM 2.5. On a complete e-K-contact space, there exists at least
one zero point of 7t

PROOF. We take an orbit ¢(t) through a point p (=¢(0)) with are:
length parameter t. Then along ¢(t), we have

do

—dt,
dt

wd*:do':

and since the tangent vector of ¢(¢) is e,, we get

do _
dt

on ¢(t). Therefore

(2.6) a(t)=t+a(0)

is valid for any ¢t. (2.6) shows that ¢(¢) is an unbounded function of ¢
going towards one direction. Putting ¢,= —0(0), we see

lim o(t) =0

2t 1)

on M’. The function o(¢) being continuous along ¢(t) on M, we obtain
a(ty) =0.

Thus the point ¢(¢,) is a zero point of the vector field #*.

3. The line element of M’ can be written as
ds’=3 (w,)’
A
=(wg)’+ %) (@)

Since w,=do, we can take the scalar function ¢ as the 4*-th coordinate:
function of M’, and we have

ds’=(do)’+ 2 (@,)*

P

If we put w,,=1", ., then using the structure equations, we have
JZ yZ

Cl<i (02> = — LdO' /\.0)/1‘{‘i Cf),m:«/\wda«—{—L WDy /\(J)ﬂ
g g

o o’

=—l—<iwz—w4kz—l—[’2#4;w#>Ada+%r1#ywyAw#.

g g

Hence we can see that the 1-form ia)2 is independent from ¢ if the:
g

following two conditions are satisfied ;

(3.1) ry,s=0,
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(3.2) © gy — 1, =0.
g

Then the line element on M’ becomes

(3.3) ds’=(do)’ +0* 3 (0))?
2

where {w}} is a basis of 1-forms on M’ and independent from the func-

tion ¢. We shall study the conditions which are equivalent to (3.1) and
(3.2).

Let us suppose that
(3.4) V., $=0

is valid. Then we can select an orthonormal frame {e,} which is paral-

lel along the orbits of e, taking account of Lemma 2.1 and 2.3. This
fact is equivalent to the condition

w4p(4) =0

and especially w,,(es) =0, which is the same condition as (3.1). Hence
if (3.4) is valid, (3.1) holds good.
Now we define 1-forms L,, on M’ by

Vx¢-ey=Lyp(X)eg
for any vector X. Then we have
Vip-e,=Vyxes—odlxe,)

=(w45(X) + 045(X))eg
and hence

(3.5) Lip=0,5+045.
It is easily seen that L, satisfy

LAB: — Liyepes LA*B:LAB',
(3.6)
L= —Lg,.

Since (g, ¢) is an almost Kéhlerian structure, we have d¢ =0, and hence
g(es, Ve, B-00)+9(es Ve ¢-€)+9(ee, Ve, ¢ e5) =0.

Then we see that

9(ec, dp(ess eg))+ 9(es, Lap(ec)ep) =0,
and consequently

Q’O(dﬂﬁ(em eg))+ L 5(ec) =0
holds good. Thus we obtain

(3.7) d¢(9,4:‘ es) = Liga(ec)ec-

LEMMA 3.1. On an e-K-contact space, (3.4) is equivalent to
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PROOF. We assume that (3.4) is valid. Then we have
VeAﬁb' es=Lpo(es)ec=0,

and therefore
Lgo(es) =0

hold for any B and C. Hence we obtain by virtue of (3.7)
(3.8) o 4 (Lige(ep)ep) = — w4 (dg(e5, €5)) =0.
On the other hand, the equation (1.7) shows that

and that
dp=od’,= 82 pep.

Therefore (3.8) becomes
w4:(024p(€5, €c)ep) =024 (e €0) =0.
The converse statement can be given only pursueing reversely the

above process.

LEMMA 3.2. On an e-K-contact space, (3.2) vmplies (3.1).

"PROOF. By virtue of (1.8), we have

QAA*:da)AA*_wAa/\waA:<

:izda/\wd—ida)"—iwa*/\wam
[ g

g
EEVE DAY
ag g

Thus if (3.2) holds, then £,, =0 and from Lemma 3.1, (3.4) is proved.

It is evident that (3.2) is the condition that the integral manifolds
B (p) are all totally umbilical. Because of (1.8), we can easily see that
the equation

(3.9) : w; 4+ @14 =0

means (3.2). By virtue of (3.5) and (3.7), it follows that (3.9) is equiva-
- lent to

(3.10) ' dd(e;, e4)=0.

As is shown in the proof of Lemma 3.1, dp=082,,e, holds good and
therefore (3.9) implies

2,4(e; €4) =0.
Using the fact that
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: 1/1 ,
24p(ep e4)=— *<* @, (€ 4) — “)A*a(@A*)) 030+=0,
g ag
we have
(3.11) Qdﬁ(eﬂ, e)=0

for any 2, p. Thus we have proved the following

PROPOSITION 3.3. On an e-K-contact space, tf
le(edk, eﬂ):O

1s valid, then all hypersurfaces B,(p) are totally umbilical and the line
element of M' has the form of (3.3). [see [4], Corollary of Theorem 5.1.}

If the structure is Kéhlerian, then it is evident that (3.9) is satisfied
and therefore we have

COROLLARY 3.4. If an e-K-contact space is Kahlerian, then all
hypersurfaces B (p) are totally wmbilical and the line element has the

Jorm of (3.3).

THEOREM 3.5. All hypersurfaces B, (p) in an e-K-contact space are
totally wmbilic iof 2,,,=0 and the sectional curvature in M' for the 2-
plane containing the vector n* is zero.

PROOF. In the proof of Lemma 3.2 we get

QAA*:L<Lwa_wA"a> /\wa""
g o
If 2,,=0, then we have

bi]‘k:bi%j:O,

(3.12)
2

bij_l_bi'j":_aij'

o
Taking consideration of the symmetric 2n-matrix B=(b;;), let X be an
eigenvector of B. Then (3.12) shows that ¢X is also an eigenvector of
B. Hence we can take an adapted basis {e,;, e;, e, e,} such that the
matrix B is diagonal with respect to {¢,}. Next we calculate the curva-
ture forms £2,, on M’ and £, on B,(p). Since the differentiation d on
M'" can be written as

Cd=d'+de 0,
do

we have

ow,

do,=d'w,+do A

Og

=@ A0+ 0,0 Ndo,
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and hence wet get
ow,

do

Making use of the structure equations on M’, we have

:a)Ao:'

‘Qz’a = dwda — Wy, A Weg— W gy NWBy o

=gy — 04, AN®,,)+do A Aé%—(%wa*)—{——i-w‘,/\wﬁa

:‘Qila_ —_cl)_—’bwﬁwﬁ AN wA_‘_%"(%wa*_wd'a) /\wd"

On the other hand, by virtue of Theorem 2.2 the sectional curvature in
B (p) satisfies — 2/ (e4 ¢,)=1/0". Therefore the sectional curvature of
the plane spanned by the vectors ey, ¢, in M’ is given by

K(ed’ e(x) :i<—1" —baa>' .
ag g
From our assumption, we have b,,=1/s, and hence w,,=(1/o)w, holds
good. Taking account of (1.8),, we have (3.2). This shows the theorem.

4. In this section we suppose that the complete e-K-contact space
M satisfies (3.2), for example, that all hypersurfaces B, (p) are totally
umbilical. Then the line element of M’ has the form of (3.3).

LEMMA 4.1. The set M, of vanishing points of 7* is a 0-dimensional.
submanifold of M.

PROOF. By virtue of Theorem 2.5, M, is non-empty. Assuming
that M, is not zero dimensional, we take a point O of M, and a non-zero
vector X which is tangential to M, at O. The metric g and ds* on M are
given by (3.3) at each point of M’ and by continuity of (3.3) at each
point of M, since the dimension of M, is less than that of M. Asjis
independent of ¢, ¢* %} w)? comes to zero when ¢ draws near zero, hence.

we have
9(X, X)=do(X)*=(X-0)*=0.

Thus we get X=0, which is a contradiction.
LEMMA 4.2. M, consists of only one point O.

PROOF. We consider a geodesic ¢(t) through O (¢(0)=0) with the.
unit tangent vector X(¢) and the arc length parameter ¢. Since M, is
zoero dimensional, we can assume that there exist no points of M, on the
geodesic arc ¢(f) (0<t<k). If we define the function fon ¢(¢) by
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J () =g(&¥c(t)), X(2)),
then we have f(0)=0. Differentiating f(f) to the direction X(?) it
follows that
Vif=gW &, X)
=9((X-0)es, X)+09(b,,0,(X)e;, X).
Since B,(p) are totally umbilical, we have b,,=(1/0)d,, and therefore
Vif=0pX)+ % w,(X)*
=g9(X, X)=1

holds good. Hence the function f(¢) is strictly monotonous increasing

on ¢(t). We assume that there exists a point @ of M, which differs from

0. As the space is complete, we can take a geodesic ¢(f) combining the

points O and @ (¢(0)=0, c¢(k)=Q). Applying the above arguement to

¢(t), we reach to a contradiction because of f(0)=rf(k)=0. :
S. Sasaki has proved the following

THEOREM. If a complete Riemawnnian space V admits the line
element of the type (3.3), then V 1is locally flat.

By virtue of this theorem, our e-K-contact space M with the metric
(3.3) on M’=M— {0} is seen that it is locally flat. However, we write
for completeness the proof showing that M is isometric with the
Euclidean space.

LEMMA 4.3. Any point Q on the hypersurface B, (p) has the constant
distance o(p) from the point O, and the mimimal geodesic joining the
pownts O and Q is giwen by the orbit of e,.

PROOF. As in the proof of Lemma 4.1, we define the function f(t)
on the minimal geodesic ¢(tf) joining O and @ (¢(0)=0, ¢(k)=Q). Then
we have

d pon_
Sl =1

Taking account of the initial condition f(0)=0, we get
f()y=t,

and this leads to the differential equation
odo =tdt

on ¢(t). Consequently we obtain under the initial condition ¢(0)=0,
o(t)y=t

along ¢(t). Therefore the length k=%(Q) of the geodesic joining O and
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Q is o(k)=0o(p) on B, (p), thus it is constant on B,(p). Conversely, if a
point on the geodesic through O for any direction X has the length k
from O, we see that it belongs to B,(p), c=Fk. By virtue of the proof of
Theorem 2.5, we see that any orbit of e,. reaches at O, so it is concluded
that the minimal geodesics through O are orbits of e,, and that they
intersect with B_(p) orthogonally.

THEOREM 4.4. If the complete e-K-contact space M with £,,=0
satisfies the condition that the sectional curvature of 2-plane containing
7t 18 zero, then M is isometric with the Euclidean space EY of flat metric,
where N 1is the dimension of M.

- PROOF. We define first the coordinate system of M as follows.
Taking a fixed orthonormal basis {f,} of the tangent space at O, we
draw a geodesic through O to the direction a,f, (2 (a¢,)?*=1). Then we
correspond (a, o) to the point on this geodesic which has the distance
o from the origin O. We define that the point O corresponds to ¢=0.
Since any geodesic starting from O is an orbit of ey, and it intersects
with each B (p) only once, it follows that the pair (a,, ¢) where 3 (a,)’=1
and ¢=0 can be taken as the coordinate system of M. Thus M is globally
diffeomorphic to the Euclidean space E?¥, and hence M is simply con-
nected. Since M is locally flat, we see that M is globally isometric with
the flat Euclidean space E7.

COROLLARY 4.5. If a complete e-K-contact space M is Kdhlerian,
then M 1is isometric with the flat Euclidean space E7.
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