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§1. Introductoin. Let 2 be a strict harmonic space in the sense
of Bauer [1], and U be an open set in &, we shall consider the Dirichlet’s
problem on U. TUsing that the set P of all continuous potentials is
adapted, we can define, simularly to the case of relatively compact U,
the balayaged measure (s,)”° and develop the argument on resolutivity
and regular points. We shall denote by C the set of all continuous
functions on U which are superharmonic in U. By regarding a
balayage as a dilation, we shall prove that (U, C) is a simplex if 2
satisfies Axiom D in Brelot [2], and that for any xe U the extremal
measure g, with ¢,< z, coincides with the balayaged measure (s,)*".

Further we shall prove that for any two z, y= U, the balayaged
measures (g,)”° and (¢,)”° are mutually absolutely continuous when U is
a connected open set in an elliptic harmonic space £2.

§2. Preliminaries. Let 2 be a locally compact, o-compact Haus-
dorff space and f, g be non-negative functions on £. We denote f1 <g¢g
if for any ¢>0 there exists a compact set K such that

xe K5 f(2) Zeg().

PROPOSITION 1. Let u be a positive Borel measure, f a Borel
measurable function and {f,} a decreasing net of upper semicontinuous
p-integrable functions conwverging to f. Suppose that there exist an index
B and a mnon-negative p-integrable function g satisfying ( fe—0) 1 <g.
Then we have

S fdp:infs fudp.

PROOF. For any ¢>0 there exists a compact set K such that
re K> fo(2)—f(x) = g(x).

) We denote by K¢ the complement of K in Q.



62 H. WATANABE NSR. 0.U., Vol. 23

Since on compact set K infg (f,—F)dp=0 holds, we have for sufficient-
K
ly large index «

\Gmpap=\ (ri—rap+ (f—nHdu<ere| gin.
Hence infg (f,—F)dp=0.

We shall call a convex cone P of C*(£) adapted, if P satisfies the
following two conditions (i) and (ii);

(i) for any xe £, there exists we P such that u(x)>0;
(ii) for any we P, there exists ve P satisfying u 1 <v.

Let us put for ue P,
H,={feC(); 3A>0, |f]<u).
‘Then H, is a Banach space with norm |
1l =1nt{2; [f]= 2u}.

‘We shall assign to the vector space H,= U H, the topology of inductive
limits of Banach spaces {H,},-,. £

PROPOSITION 2. Any positive linear form L defined on dense sub-
space N of H, is uniquely extended to a positive linear form on H,.

PROOF. Since N is dense in H,, for any ue P we can find u,e N
with ||u—u,]| <1/2, and holds u1>u—%u_>__%ugo. For any ge H, N,
we get —||gll.u=g=]lg]l.u, whence —2]|g|| u,=9=2]|g||u,. Since L is
positive on N, we have

| L(g)| =2]| 9]l L(u,)

for any ge H,N\N. Therefore, L can be uniquely extended to a positive
linear form on H, for any uwe P and it can be uniquely to a positive
linear form on A,

§3. Choquet boundaries and simplexes. Let P be an adapted
cone of C*(£). We denote by I, the set of all P-integrable positive
measures on £. Let C be an min-stable, linearly separating convex
cone with PCCc H,. A cone C is called linearly separating if for every
two different x, y of 2 and any real A=0 there exists w=C such that
w(®) # Au(y).

For any two measures u, ve M} we denote by u<y if v(v) =< p(v) for
any veC. Then we see that < is an order relation in ;. A maximal
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measure pc M, according to the order «, is called C-extremal (or
simply extremal). We call the Choquet boundary with respect to C,
denoted by 6(C), the set of all points x of 2 such that, if M}, ¢, < ¢ then
p=¢,. If 2 has a countable base, then J(C) is a G;-set. Further we
shall denote by 2-(C)=4£- the set of all points x such that there exists
we C with u(x)<0. Then under the condition £-=4#, a measure p=M;
is extremal if and only if it is carried by the set 4(C).

We shall call (£, C) a C-simplex (or simply simplex), if for any
xe 2, an extremal measure pu= M) with ¢,<p exists and is unique.
Let us denote the extremal measure with ¢,<px by g, and write
Q.(f)=inf g(x) provided that (£, C) be a simplex. Then we have . (f)

gzr
heC

=Q,(f) for any fe —C. [T]

| PROPOSITION 3. If (2, C) is a simplex, then a function x— u,(f) 18
Borel measurable for any fe H,.

PROOF. Since p,(f)=Q,(f) for any fe —C and x—Q,(f) is upper
semicontinuous, the function x— g, (f) is Borel measurable, whence for
any fe C—C, x— p,(f) is Borel measurable. Further for any fe H,, let
us choose v, with fe H,. Then we can find f,e(C—C)NH, with
Nf—Flls, <1/n, equivalently |f(x)—f.(2)]| < (1/n)v(x) for any z< 2, since
C—C is dense in H,. Hence

| 2o ) — e F) | = (U fm) o ().

Since the function x— p,(f,) is Borel measurable, x— p,(f) is also Borel
measurable.

§4. Dilations. Throughout this section, £ will be a locally
compact Hausdorff space with a countable base. Let P be an adapted
cone of C*(£) and C be a min-stable, linearly separating cone with
PcCcH, We shall say that an extended real-valued function f is
upper P-bounded if there exists ve P satisfying f<v. A function f on
2 is called C-concave (or simply concave) if for any z<= 2 and any
measure g M} with ¢,<y, we have u(f)=f(x). If fand —f concave, f
is called affine. We denote by 2 the set of all upper P-bounded upper
semicontinuous affine functions on 2.

A mapping D from £ into M is called a dilation if for any x< £,
e, < D(x) and for any fe H,, the function x—»(Df)(ac):D(x)(f) is Borel
measurable. We say that xeQ is D-regular if D(x)=e¢,, the set of
which will be denoted by 02(£2). Further, a dilation D is called affine if
for any ve —C, Dv is the limit of a decreasing net of functions in %L
A dilation D is called weakly affine if there exists a min-stable cone
C,c C with the following properties ;
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(i) C, separates linearly points in £,
(i) for any ve —C,, Dv is the limit of a decreasing net of functions

in A.

THEOREM 1. If D is a weakly affine dilation for C and 2=27(C),
then (2, C) is a simplex and for any xe £ Dx is the extremal measure
Yy With e, < p.  In particular, 6(C)=0?(C).

PrROOF. Let 4, v be extremal measures of M, with ¢, «pu, <.
Since D is a weakly affine dilation, there exists a min-stable linearly
separating cone C,cC such that for any ve —C,, D(v) is the limit of a
decreasing net of . Therefore, by proposition 1 we get u(D(v)) =v(D(v)).
Since g, v are carried by d(C) and D(v)=wv on §(C), we have u(v)=v(v),
whence g=y. Thus, (£, C) is a simplex. To prove p,=D(x), let ve —C..
Then we have ’

(V) =Q,(v)= sup{u(v) ; pe S}E;, &Ly = (D) (@). .onenens (1)

Further, suppose that (D(v))(#)<a,(x) for any x= 2. Then we get
v(x) = a,(x) since v(x) < (D(x))(v). Hence Q,(v) =Q.(a,)=a,(x). It follows

(V) S (D)X eeviieriiniiiiiiiiiienneaes (2)
By (1) and (2) we have ,

() = (D())(2) = D(2)(v)

for any ve —C,, whence g,=D(%).

THEOREM 2. If (2, C) is a simplex, there exists an affine dilation
for C.

PROOF. For any z= £, we put g, the unique extremal measure
with ¢, < y,. When we define D(x)=_p,, D is a dilation, since, by proposi-
tion 3, for any fe H, the mapping x— p,(f) is Borel measurable.

- Further, for any ve —C, we get

10 =Q,()=inf{h(x); heA, hZV}. cvveerireiviennnn (1)

Suppose that b, h,e U satisfy ~,=v and h,=v. Then the function
min(h,, h,) is concave and satisfies v<min(h, h,). Therefore, there
exists a heW with v<h<min(h, h,) by [7]. It follows that the family
in the third equality of (1) is a decreasing net. Hence D is an affine
dilation.

§5. Balayaged measures. Let £ be a harmonic space which
satisfies Bauer’s axioms (I), (II), (III), (IV) in [1], and P be the set of all
continuous potentials in £. According to Bauer, we call 2 a strong
harmonic space, if 2 satisfies the following conditions;
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() for any x < £, there exists a fe P with f(x) > 0.
Hereafter we assume that 2 is a strong harmonic space.

THEOREM 3. For any peMi and any EC R, there exists uniquely
a measure p* such that
Sfudw:S REdy

Jor any ve P.

PROOF. Since P is a min-stable, linearly separating adapted cone
of C*(£2), P—P is dense in H,.[6] We put N=P—P. Assume that an
element d of N has two representations; d=u—v=u—2" where u, v, ,

v P. Then we have }?5—}?5, —R?_ RE. Further RE is P-integrable
since it is dominated by u. Hence we get

| (Br—BEdp={ (BE— R)dp.

Thus, we cau define for any d=u-—v, L(d)_—_g (RE— R®)dp. Since L,

which is positive and linear, is well-defined on N. L is uniquely
extended to a positive linear form on H,. We know that P is adapted,
and there exists a measure g} such that p*(f)=L(f) for any
SfeH,. [b] Particularly, for any d=u—v we have

| w—vydpr=\ (RE— RDdp

The measure p” is called the balayaged measure with respect to p
and E. '

LEMMA 1. Let U be an open set in £ and v=0 be superharmonic
in Q. Then we have RV(x)=R(x)'® for any xec Q.

PROOF. Let w=0 be hyperharmonic in £ with w=v» on oU. Then
for any 20U we have lim inf w(x)=w(z) =v(2). Put

x—z, 25U

inf(w(x), v(x)) for xeU
wl(w):
() for xe U-.
Then w, is non-negative and hyperharmonic in £, and w,=v in U°.
Hence we have Rg’”(x)gwl(oc)gw(x) for any z= U. It follows I?E"(x)
< R®(%) in U. On the other hand, it is clear that R;U(x)gﬁg"’(m) in U.

Let U be an open set in 2. For any xe U we shall call (¢,)"° the

& We denote by 9U the topological boundary of U.
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harmonic measure with respect to x and U, and denote by Y.
By lemma 1, we have the following proposition ;

PROPOSITION 4. For any x<= U, pY is supported by oU.

By Pradelle (6), we consider the Dirichle’s problem for open sets U.
If fis an extended real-valued function on 9U, we put
Hi=inf{v; ve Y
where %5}’ is a family of all hyperharmonic functions » in U satisfying
the following conditions;

i) lim inf v(x)=f(?) and > — o for any zeoU,

Usx—z
ii) v= —p, for an p,e P.
Similarly we define HY=—HY,,. A function f is called resolutive if
Hy=Hz.

By the similar method of Bauer [1], we have the following two
propositions;

PROPOSITION 5. Any fe H,(0U) is resolutive and for any x< U we
have

Hw) =\ fdp".

PROPOSITION 6. Suppose that for any x< U, f1s pl-integrable. Then

a function ac—>S Jdul is harmonic in U.

A point z,€0U is called regular if lim ﬁ¢(x):go(xo) for any
Ucx—x
pe H,(0U), or ’

lim pf=e, under the topology ¢(M,(0U), H,(oU)).

T—x0

Then we have the following proposition ;

PROPOSITION 7. For any z<= dU, the following assertions are equiva-
lent ;

(@) =z is regular,
() U° is not thin at z,
() () =¢.

Using this proposition, we have the following lemma ;

LEMMA 2. If ze0U, there is a sequence (x,) of U converging to z
for which the measure (c,)7° converges to (e,)7° under the topology

a(M,(T), Hy(U)).
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By this lemma we see that for any ze U, (,)Y° is supported on aU.
Let U be an open set in a strict harmonic space £ and C be the set

«of all P-bounded continuous functions on U which are superharmonic
in U. We know that C is a min-stable, linearly separating cone and the

set P U of all restrictions on U of elements of P is an adapted cone.
Hereafter we shall assume that for e U, there exists veC with

v(x) <0. Then the Choquet boundary §(C) of U Wibth.respect to C is not
-empty and by the maximum principle, the topological boundary oU is a
-determining set. Hence 4(C)caU.

We shall write B(x)=(¢,)*’ for any x< U.

THEOREM 4. A mapping x— B(x) from U into MS(U) is a dilation
Jor C and the regular points of oU are just the B-regular points.

PROOF. For any pe P, the function x—»B(x)(p):Rgc(x) is lower
‘semicontinuous and it is Borel measurable. Since P|U—P|U is dense
in H,(U), z— B(z)(f) is Borel measurable for any fe H,(U). For any
9<C, g|U is an upper function of g|oU. It follows for any x= U

B(x)(9) = H,(%) = 9(%) = e,(9)-
Hence ¢, < B(%).
If 20U, then by lemma 2, there exists a sequence (x,) of U such

‘that B(x,) converges B(z) under o(S)sz(U), H,(U)). Hence for any g=C,
B(2)(g9) =1im B(x,)(9) =¢(9).

By proposition 7, x=dU is regular point if and only if B(x)=e,. It
follows that = oU is regular if and only if it is B-regular.

We say that 2 satisfies Axiom D if for all locally bounded super-
harmonic functions, the continuity of the restriction it’s support
implies the continuity of £ everywhere. We have the following theo-
rem by the same method in Effros and Kazdan [4].

THEOREM 5. Suppose that 2 satisfies Axiom D, and U is an open
set in 2. Then balayage x— B(x) is an affine dilation for C.

COROLLARY. Suppose that 2 satisfies Axiom D and UC 2 is an open
set such that for any xe U, there exists veC with v(x)<0. Then the
regular and Choquet boundary points coincide and (U, C) is a simplex.

Further, for any x< U, the balayaged measure (a,v)’fc 18 the extremal
measure p, with < p,.

PROPOSITION 8. Suppose that 2 is elliptic. If U is a connected
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open set in 2, then for any x, ye U, the harmonic measure ul and pl
are mutually absolutely continuous. The support of each measure con-
tains all regular points.

PROOF. Let B is a Borel set contained in a compact set of aU. Put

hB(z)=S xsd s

Then hy is harmoniﬂ'c_in"U_by proposition 6, since y, is pl-integrable..
Since 2 is elliptic, we may apply Harnak’s inequality in (1) ; there is a.
constant « such that for all B,

hy(2) < ahg(y) or
PIB) S apl(B). i (1)

On the other hand, as 2 is o-compact, there exists for any Borel set A
an increasing sequence (B,) of Borel sets where each B, is contained in
an compact set and A=U,B,. If pY(4)=0, ¢J(B,)=0. Hence we have
£Y(B,)=0 by (1). Therefore x%(4)=0 holds. By symmetry we have the
first assertion. : ‘

Let z be any regular point and (x,) be a sequence of converging to
z. If z does not lie in the support of p¥, we may find a positive contin-
uous function f with compact support on U which satisfies f(z) =0 and -
vanishes on the support of pU. Then, by the absolute continuity, we
get p7 (f)=0 for all n. Since z is regular, we have

£(2)=lim Hy@)=lim\ fduZ =0.

N—00

This is a contradiction.

REMARK. Axiom D implies that £ is elliptic. Therefore, if £
satisfies Axiom D, then by theorem 5 and proposition 8, the support of’

harmonic measure pf for any x< U coincides with 4(C).
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