On Examples of Riemannian Spaces Harmonic relative to Killing Vectors ## Shun-ichi Tachibana Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received March 15, 1972) **Introduction.** Let M^n be a Riemannian space with positive definite metric. If M^n admits a unit Killing vector $X = (\eta^i)$ satisfying $$V_{\,k}\,V_{\,j}\,\eta^i\!=\!\eta_j\,\delta_k{}^i\!-\!\eta^i\,g_{kj}$$, it is called a Sasakian space, and lots of works have been done about it. On the other hand, a Riemannian space M^n is said to be harmonic at a point O if Δs is a function of s only, where Δ is the Laplace-Beltrami operator and s denotes the geodesic distance measured from S. When S is harmonic at any point, it is called harmonic. It is easily seen that if a Sasakian space is harmonic it is a space of constant curvature. This comes from the following fact. The "harmonic property" requires the homogeneity for the directions in a sense contrary to what a Sasakian space has a speciality with the direction S. The purpose of this paper is to generalize harmonic property so that it is special with given directions, and we shall show that the Euclidean S-space and the S-sphere have such a property. 1. The definition of K_r -harmonic space. Let M^n be an n dimensional Riemannian space of C^{∞} with positive definite metric g_{ij} . A Killing vector $X=(\eta^i)$ in M^n is a vector field satisfying $$V_j \eta_i + V_i \eta_j = 0$$, where V_i denotes the operator of Riemannian derivation and $\eta_i = g_{ij} \eta^{j,2}$. If a geodesic c is orthogonal to a Killing vector X at a point, then it is orthogonal to X at any point of c. Now we shall assume that M^n admits an orthonormal r-field $(0 \le r \le n)$ of Killing vectors $X_{\alpha} = (\eta_{\alpha}^{i})$. They satisfy ¹⁾ For examples, Sasaki and Hatakeyama [4], Okumura [5]. ²⁾ The summation convention is assumed for Latin indices throughout the paper. All functions, vector and tensor fields will be supposed to be of C^{∞} . $$egin{align} V_{j}\,\eta_{lpha i}\!+\!V_{i}\,\eta_{lpha j}\!=\!0\;, & (\eta_{lpha i}\!=\!g_{ij}\,\eta_{lpha}{}^{j})\;, \ & \eta_{lpha}{}^{i}\,\eta_{eta i}\!=\!\delta_{lphaeta}\;. & \end{aligned}$$ Let O be any point of M^n and U a normal neighbourhood of origin O. We shall denote by U_X the set consisting of all points in U each point of which is on a geodesic through O and orthogonal to X_1, \dots, X_r . If we choose U sufficiently small, U_X becomes a n-r dimensional submanifold. In fact, let Y_1, \dots, Y_{n-r} be vectors at O which constitute an orthonormal base together with $X_1(O), \dots, X_r(O)$. Then U_X is given by $\operatorname{Exp}(u_1Y_1+\dots+u_{n-r}Y_{n-r})$ in a small U, where u_1, \dots, u_{n-r} are parameters and Exp denotes the exponential map from the tangent space at O into U. The Laplace-Beltrami operator Δ is defined by $$\Delta = g^{ij} \nabla_i \nabla_j$$. Defining $\bar{\mathcal{P}}_i$ by $$\overline{V}_i = \overline{V}_i - \sum_{\alpha=1}^r \eta_{\alpha i} \, \eta_{\alpha}{}^j \, \overline{V}_j$$ we shall introduce an operator \overline{A} by $$\overline{A} = g^{ij} \, \overline{V}_i \, \overline{V}_i$$. It is easy to see the following equation to be valid. $$\vec{\Delta} = \Delta - \sum_{\alpha=1}^r \eta_{\alpha}{}^i \eta_{\alpha}{}^j \nabla_i \nabla_j$$. A Riemannian space M^n admitting an orthonormal r-field of Killing vectors X_{α} will be called K_r -harmonic at O, if $\overline{\varDelta}s$ is a function of s only provided that it is evaluated on a U_X of origin O, where s denotes the geodesic distance measured from O. If M^n is K_r -harmonic at any point O, it will be called K_r -harmonic. When r=0 we have $\overline{\varDelta}=\varDelta$ and K_0 -harmonic of C^ω is nothing but harmonic in the sense of [1]. **2.** The Euclidean space E^n . Let E^n be the Euclidean n-space with orthogonal coordinates $\{x^i\}$ of origin O. In this section we shall show that E^n is K_r -harmonic at O for any orthonormal r-field of Killing vectors X_{α} . Any geodesic c through O is of the form (2.1) $$x^i = \xi_i s, \quad \xi_i \xi_i = 1,^{3}$$ where ξ_i are constant for c, and s the arc length. Thus the coordinate x^i of point in E^n are functions of ξ_i and s, and ξ_i and s are functions of x^i . ³⁾ By our convention, $\xi_i \xi_i$ means $\sum \xi_i \xi_i$. From $x^i x^i = s^2$, it follows that $$x^i = ss_i \qquad (s_i = \partial_i s)$$ and hence $$\xi_i = s_i$$ are valid. On the other hand, we have from (2.1) $$\delta_i^i = s \partial_i \xi_i + s_i \xi_i$$. Hence, if we put $$\Delta_{ij} = \Delta_{ji} = \delta_{ij} - \xi_i \, \xi_j$$, then it holds that $$\partial_j \, \xi_i = \frac{1}{s} \, \mathcal{L}_{ij} \, .$$ \mathcal{A}_{ij} satisfy the following identities: $$\Delta_{ij} \Delta_{jk} = \Delta_{ik}$$, $\Delta_{ij} \xi_j = 0$, $\Delta_{ij} = n - 1$. From (2.2) and (2.3) we have $$\nabla_{j}\nabla_{i}s = \partial_{j}\partial_{i}s = \partial_{j}\xi_{i} = \frac{1}{s}\Delta_{ij}.$$ Thus we get $$\Delta s = V_i V_i s = \frac{n-1}{s}$$ which shows E^n to be harmonic at O. Now, let $X_{\alpha} = (\eta_{\alpha}^{i})$ be an orthonormal r-field of Killing vectors. Then we have from (2.4) $$\eta_{\alpha}{}^{i}\,\eta_{\alpha}{}^{j}\,\overline{V}_{j}\,\overline{V}_{i}\,s\!=\!\frac{1}{s}\{1-(\eta_{\alpha}{}^{i}\,\xi_{i})^{2}\}$$, from which and (2.5) it follows that $$\bar{\Delta}s = \frac{1}{s} \{n - 1 - r + \sum_{\alpha=1}^{r} (\eta_{\alpha}^{i} \hat{\xi}_{i})^{2}\}.$$ Consider a point $P(\xi_i s_0)$ in U_x . As P is on a geodesic $c: x^i = \xi_i s$ orthogonal to $X_1, \dots, X_r, \eta_\alpha{}^i \xi_i = 0$ hold good. Hence $$\bar{\Delta}s = \frac{n-1-r}{s}$$ on U_x is valid. Thus we know that E^n is K_r -harmonic at O. 3. Killing vectors in spaces of constant curvature. The next purpose of this paper is to show that the unit sphere of any odd dimension is K_1 -harmonic for a Killing vector. As a preparation we shall determine in this section the form of Killing vector in spaces of constant curvature in terms of normal coordinates. Let N^n be a non-flat space of constant curvature. The curvature tensor R_{ijl}^h of N^n satisfies $$R_{ijl}{}^h = k(g_{jl} \, \delta_i{}^h - g_{il} \, \delta_j{}^h)$$, where k=R/n(n-1) is constant, R being the scalar curvature. Let O be any point of N^n and consider a normal neighbourhood U of origin O. We suppose that the normal coordinate $\{x^i\}$ in U has been taken as $g_{ij}(0) = \delta_{ij}$, where g_{ij} denotes the metric tensor. In U any geodesic c through O is of the form $$x^i = \xi_i s$$, $\xi_i \xi_i = 1$, where ξ_i are constant for c, and s means the geodesic distance measured from O. In a similar way as in § 2, we know that $\xi_i = s_i$ and $$\Delta_{ij} = \Delta_{ji} = \delta_{ij} - \xi_i \xi_j$$ satisfy the following identities: (3.1) $$\Delta_{ij} \Delta_{jk} = \Delta_{ik}, \qquad \Delta_{ij} \xi_{j} = 0,$$ $$\Delta_{ii} = n - 1,$$ $$\partial_{j} s_{i} = \partial_{j} \xi_{i} = \frac{1}{s} \Delta_{ij}.$$ As is well known [2], the metric tensor are given by $$g_{ij}(x) = \xi_i \xi_j + \gamma(s) \Delta_{ij},$$ $$g^{ij}(x) = \xi_i \xi_j + \gamma(s)^{-1} \Delta_{ij},$$ where $\gamma(s)$ is the function defined by $$\gamma(s) = \left\{ egin{array}{ll} \left(rac{\sin as}{as} ight)^2, & ext{if } k = a^2, \ \left(rac{\sinh as}{as} ight)^2, & ext{if } k = -a^2, \end{array} ight.$$ a being positive. The Christoffel's symbols are (3.2) $$\left\{\begin{array}{l} h\\ ij \end{array}\right\} = \left(\frac{1-\gamma}{s} - \frac{\gamma'}{2}\right) \mathcal{L}_{ij}\,\xi_h + \frac{\gamma'}{2\gamma} \left(\mathcal{L}_{ih}\,\xi_j + \mathcal{L}_{jh}\,\xi_i\right).$$ LEMMA 3.1. For any constants $a_{ij} = -a_{ji}$, $$u_i = \gamma(s) a_{ij} x^j$$ are covariant components of a Killing vector and satisfy $$u_i(O) = 0$$, $(\nabla_j u_i)_O = a_{ij}$. In fact, we have $$V_j u_i = \gamma a_{ij} + \frac{\gamma'}{2\gamma} (u_i \xi_j - u_j \xi_i)$$. The initial value $(V_j u_i)_o$ follows from taking account of $$rac{\gamma'}{\gamma} = \left\{egin{array}{ll} 2\Big(a\cot as - rac{1}{s}\Big) & ext{if } k = a^2 \ 2\Big(a\coth as - rac{1}{s}\Big) \ , & ext{if } k = -a^2 \ . \end{array} ight.$$ Next, if we put $$\lambda(s) = \left\{ egin{array}{ll} rac{1}{as} \sin as \cos as \,, & ext{if } k = a^2 \,, \ rac{1}{as} \sinh as \cosh as \,, & ext{if } k = -a^2 \,, \end{array} ight.$$ the following lemma holds good. LEMMA 3.2. For any constants b_i , $$\begin{aligned} v_i &= \lambda b_i + (1 - \lambda)\beta(\xi)\xi_i \\ &= b_i + (\lambda - 1)\Delta_{ij}b_j \end{aligned}$$ are covariant components of a Killing vector and satisfy $$v_i(O) = b_i$$, $(\nabla_j v_i)_o = 0$, where $$\beta(\xi) = b_i \, \xi_i$$. In fact, we have $$\nabla_j v_i = \mu(s) (\Delta_{ih} \, \xi_j - \Delta_{jh} \, \xi_i) v_h$$ where $$\mu(s) = \left\{ egin{array}{ll} -a an as \,, & ext{if } k = a^2 \,, \ a anh \, as \,, & ext{if } k = -a^2 \,. \end{array} ight.$$ Now, consider a Killing vector w^i in U satisfying $$w_i(O) = b_i$$, $(\nabla_j w_i)_O = a_{ij}$. Then, it is shown that w_i is written as $$w_i = u_i + v_i$$ with u_i in Lemma 3.1 and v_i in Lemma 3.2. Because, a Killing vector w^i satisfies $$\nabla_h \nabla_i w_i = k(w_i g_{hi} - w_i g_{hi})$$ and is determined by its values w_i and $V_i w_i$ at O. 4. S^{2m+1} as a K_1 -harmonic space. Consider the sphere S^{2m+1} of radius 1 in the Euclidean E^{2m+2} . It is a space of constant curvature (k=1) and admits a unit Killing vector $X=(\eta^i)$ globally. η_i satisfy $$\nabla_h \nabla_j \eta_i = \eta_j g_{hi} - \eta_i g_{hj}$$. S^{2m+1} is a typical example of Sasakian space and X is called a Sasakian structure of S^{2m+1} , [5]. If we put $$\varphi_{ji} = \nabla_j \eta_i$$ then the following equations hold good: $$\varphi_{ii} \eta^i = 0 ,$$ $$\varphi_{ji}\,\varphi_h^{\ i} = g_{jh} - \eta_j\,\eta_h \ .$$ We shall show that S^{2m+1} is K_i -harmonic for the Sasakian structure $X=(\eta^i)$. Let O be a point of S^{2m+1} and U a normal neighbourhood of originary O. η^i being Killing, it is written as $$\eta_i = u_i + v_i$$ with u_i in Lemma 3.1 and v_i in Lemma 3.2. As η^i is unit, we have $$(4.3) b_i b_i = 1$$ by taking account of $u_i(O) = 0$ and $v_i(O) = b_i$. If we consider $$\varphi_{ji} = V_j \eta_i = V_j u_i + V_j v_i$$ at O, then it follows that $$\varphi_{ii}(O) = \alpha_{ii}$$ and b_i satisfy $$a_{ii}b_i = 0,$$ $$(4.5) a_{ij} a_{ih} = \delta_{jh} - b_j b_h$$ by virtue of (4.1) and (4.2). Thus, η_i is given by $$\eta_i = \gamma a_{ih} x^h + \lambda b_i + (1 - \lambda) \beta(\xi) \xi_i$$ where $a_{ih} = -a_{hi}$ and b_i satisfy (4.3), (4.4) and (4.5) and $$\gamma(s) = \left(\frac{\sin s}{s}\right)^2$$, $\lambda(s) = \frac{1}{s} \sin s \cos s$, $\beta(\xi) = b_h \xi_h$. The contravariant components of X are $$\eta^{i} = a_{ih} x^{h} + \gamma^{-1} \lambda b_{i} + (1 - \gamma^{-1} \lambda) \beta \xi_{i}.$$ Now we shall calculate $\overline{\varDelta}s$ in U for $X=(\eta^i)$. From (3.1) and (3.2) it follows that $$V_j s_i = \partial_j s_i - \left\{ egin{aligned} h \ ji \end{aligned} ight\} s_h = \left(rac{\gamma}{s} + rac{\gamma'}{2} ight) \mathcal{A}_{ij}$$, $$\Delta s = g^{ji} \, V_j \, s_i = (n-1) \left(\frac{1}{s} + \frac{\gamma'}{2\gamma} \right) = (n-1) \cot s$$. Taking account of (4.6) we can get $$\eta^{i} \eta^{j} \nabla_{j} s_{i} = (1 - \beta^{2}) \left(\frac{1}{s} + \frac{\gamma'}{2\gamma} \right) = (1 - \beta^{2}) \cot s,$$ and hence $$\overline{\Delta}s = \Delta s - \eta^i \eta^j \nabla_i s_i = (n - 2 + \beta^2) \cot s$$ follows. As $\beta(\xi) = b_i \, \xi_i = 0$ is valid on U_X , $$\overline{\Delta}s = (n-2) \cot s$$ on U_x holds good, which shows S^{2m+1} to be K_1 -harmonic. - 5. **Remarks.** (i) Let S^n be the n dimensional sphere of constant curvature. If n=1, 3 or 7, S^n admits an orthonormal n-field of Killing vectors, [3]. It is also known that S^{4m+3} admits an orthonormal 3-field of Killing vectors, [6], [7]. - (ii) E^n and S^n are harmonic Riemannian spaces in the sense of H.S. Ruse. It is an open problem to find a K_1 -harmonic Riemannian space which is not harmonic. - (iii) A harmonic Riemannian space (of C^{ω}) is an Einstein space, i.e., $R_{ij} = (n-1)kg_{ij}$ holds good. Does a K_1 -harmonic Riemannian space of C^{ω} satisfy $R_{ij} = ag_{ij} + b\eta_i \eta_j$ for some constants a and b? ## Bibliography - [1] H.S. Ruse, A.G. Walker and T.J. Willmore: Harmonic spaces, Edizioni Cremonese, Roma, 1961. - [2] A. Duschek und W. Mayer: Lehrbuch der Differentialgeometrie, II, Riemannsche Geometrie, Teubner, 1930. - [3] J.E. D'Atri and H.K. Nickerson: The existence of special orthonormal frames, J. Dif. Geo., 2 (1968), 393-409. - [4] S. Sasaki and Y. Hatakeyama: On differentiable manifolds with contact metric structures, J. of the Math. Soc. of Japan, 14 (1962), 249-271. - [5] M. Okumura: Some remarks on space with a certain contact structure, Tôhoku Math. J., 14 (1962), 135-145. - [6] Y.Y. Kuo: On almost contact 3-structure, Tôhoku Math. J., 22 (1970), 325-332. - [7] S. Tachibana and W.N. Yu: On a Riemannian space admitting more than one Sasakian structures, Tôhoku Math. J., 22 (1970), 536-540.