On Examples of Riemannian Spaces Harmonic relative to Killing Vectors

Shun-ichi Tachibana

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received March 15, 1972)

Introduction. Let M^n be a Riemannian space with positive definite metric. If M^n admits a unit Killing vector $X = (\eta^i)$ satisfying

$$V_{\,k}\,V_{\,j}\,\eta^i\!=\!\eta_j\,\delta_k{}^i\!-\!\eta^i\,g_{kj}$$
 ,

it is called a Sasakian space, and lots of works have been done about it. On the other hand, a Riemannian space M^n is said to be harmonic at a point O if Δs is a function of s only, where Δ is the Laplace-Beltrami operator and s denotes the geodesic distance measured from S. When S is harmonic at any point, it is called harmonic. It is easily seen that if a Sasakian space is harmonic it is a space of constant curvature. This comes from the following fact. The "harmonic property" requires the homogeneity for the directions in a sense contrary to what a Sasakian space has a speciality with the direction S. The purpose of this paper is to generalize harmonic property so that it is special with given directions, and we shall show that the Euclidean S-space and the S-sphere have such a property.

1. The definition of K_r -harmonic space. Let M^n be an n dimensional Riemannian space of C^{∞} with positive definite metric g_{ij} . A Killing vector $X=(\eta^i)$ in M^n is a vector field satisfying

$$V_j \eta_i + V_i \eta_j = 0$$
,

where V_i denotes the operator of Riemannian derivation and $\eta_i = g_{ij} \eta^{j,2}$. If a geodesic c is orthogonal to a Killing vector X at a point, then it is orthogonal to X at any point of c.

Now we shall assume that M^n admits an orthonormal r-field $(0 \le r \le n)$ of Killing vectors $X_{\alpha} = (\eta_{\alpha}^{i})$. They satisfy

¹⁾ For examples, Sasaki and Hatakeyama [4], Okumura [5].

²⁾ The summation convention is assumed for Latin indices throughout the paper. All functions, vector and tensor fields will be supposed to be of C^{∞} .

$$egin{align} V_{j}\,\eta_{lpha i}\!+\!V_{i}\,\eta_{lpha j}\!=\!0\;, & (\eta_{lpha i}\!=\!g_{ij}\,\eta_{lpha}{}^{j})\;, \ & \eta_{lpha}{}^{i}\,\eta_{eta i}\!=\!\delta_{lphaeta}\;. & \end{aligned}$$

Let O be any point of M^n and U a normal neighbourhood of origin O. We shall denote by U_X the set consisting of all points in U each point of which is on a geodesic through O and orthogonal to X_1, \dots, X_r . If we choose U sufficiently small, U_X becomes a n-r dimensional submanifold. In fact, let Y_1, \dots, Y_{n-r} be vectors at O which constitute an orthonormal base together with $X_1(O), \dots, X_r(O)$. Then U_X is given by $\operatorname{Exp}(u_1Y_1+\dots+u_{n-r}Y_{n-r})$ in a small U, where u_1, \dots, u_{n-r} are parameters and Exp denotes the exponential map from the tangent space at O into U.

The Laplace-Beltrami operator Δ is defined by

$$\Delta = g^{ij} \nabla_i \nabla_j$$
.

Defining $\bar{\mathcal{P}}_i$ by

$$\overline{V}_i = \overline{V}_i - \sum_{\alpha=1}^r \eta_{\alpha i} \, \eta_{\alpha}{}^j \, \overline{V}_j$$

we shall introduce an operator \overline{A} by

$$\overline{A} = g^{ij} \, \overline{V}_i \, \overline{V}_i$$
.

It is easy to see the following equation to be valid.

$$\vec{\Delta} = \Delta - \sum_{\alpha=1}^r \eta_{\alpha}{}^i \eta_{\alpha}{}^j \nabla_i \nabla_j$$
.

A Riemannian space M^n admitting an orthonormal r-field of Killing vectors X_{α} will be called K_r -harmonic at O, if $\overline{\varDelta}s$ is a function of s only provided that it is evaluated on a U_X of origin O, where s denotes the geodesic distance measured from O. If M^n is K_r -harmonic at any point O, it will be called K_r -harmonic. When r=0 we have $\overline{\varDelta}=\varDelta$ and K_0 -harmonic of C^ω is nothing but harmonic in the sense of [1].

2. The Euclidean space E^n . Let E^n be the Euclidean n-space with orthogonal coordinates $\{x^i\}$ of origin O. In this section we shall show that E^n is K_r -harmonic at O for any orthonormal r-field of Killing vectors X_{α} .

Any geodesic c through O is of the form

(2.1)
$$x^i = \xi_i s, \quad \xi_i \xi_i = 1,^{3}$$

where ξ_i are constant for c, and s the arc length. Thus the coordinate x^i of point in E^n are functions of ξ_i and s, and ξ_i and s are functions of x^i .

³⁾ By our convention, $\xi_i \xi_i$ means $\sum \xi_i \xi_i$.

From $x^i x^i = s^2$, it follows that

$$x^i = ss_i \qquad (s_i = \partial_i s)$$

and hence

$$\xi_i = s_i$$

are valid. On the other hand, we have from (2.1)

$$\delta_i^i = s \partial_i \xi_i + s_i \xi_i$$
.

Hence, if we put

$$\Delta_{ij} = \Delta_{ji} = \delta_{ij} - \xi_i \, \xi_j$$
,

then it holds that

$$\partial_j \, \xi_i = \frac{1}{s} \, \mathcal{L}_{ij} \, .$$

 \mathcal{A}_{ij} satisfy the following identities:

$$\Delta_{ij} \Delta_{jk} = \Delta_{ik}$$
, $\Delta_{ij} \xi_j = 0$, $\Delta_{ij} = n - 1$.

From (2.2) and (2.3) we have

$$\nabla_{j}\nabla_{i}s = \partial_{j}\partial_{i}s = \partial_{j}\xi_{i} = \frac{1}{s}\Delta_{ij}.$$

Thus we get

$$\Delta s = V_i V_i s = \frac{n-1}{s}$$

which shows E^n to be harmonic at O.

Now, let $X_{\alpha} = (\eta_{\alpha}^{i})$ be an orthonormal r-field of Killing vectors. Then we have from (2.4)

$$\eta_{\alpha}{}^{i}\,\eta_{\alpha}{}^{j}\,\overline{V}_{j}\,\overline{V}_{i}\,s\!=\!\frac{1}{s}\{1-(\eta_{\alpha}{}^{i}\,\xi_{i})^{2}\}$$
 ,

from which and (2.5) it follows that

$$\bar{\Delta}s = \frac{1}{s} \{n - 1 - r + \sum_{\alpha=1}^{r} (\eta_{\alpha}^{i} \hat{\xi}_{i})^{2}\}.$$

Consider a point $P(\xi_i s_0)$ in U_x . As P is on a geodesic $c: x^i = \xi_i s$ orthogonal to $X_1, \dots, X_r, \eta_\alpha{}^i \xi_i = 0$ hold good. Hence

$$\bar{\Delta}s = \frac{n-1-r}{s}$$
 on U_x

is valid. Thus we know that E^n is K_r -harmonic at O.

3. Killing vectors in spaces of constant curvature. The next purpose of this paper is to show that the unit sphere of any odd dimension is K_1 -harmonic for a Killing vector. As a preparation we shall determine in this section the form of Killing vector in spaces of

constant curvature in terms of normal coordinates.

Let N^n be a non-flat space of constant curvature. The curvature tensor R_{ijl}^h of N^n satisfies

$$R_{ijl}{}^h = k(g_{jl} \, \delta_i{}^h - g_{il} \, \delta_j{}^h)$$
 ,

where k=R/n(n-1) is constant, R being the scalar curvature.

Let O be any point of N^n and consider a normal neighbourhood U of origin O. We suppose that the normal coordinate $\{x^i\}$ in U has been taken as $g_{ij}(0) = \delta_{ij}$, where g_{ij} denotes the metric tensor. In U any geodesic c through O is of the form

$$x^i = \xi_i s$$
, $\xi_i \xi_i = 1$,

where ξ_i are constant for c, and s means the geodesic distance measured from O. In a similar way as in § 2, we know that $\xi_i = s_i$ and

$$\Delta_{ij} = \Delta_{ji} = \delta_{ij} - \xi_i \xi_j$$

satisfy the following identities:

(3.1)
$$\Delta_{ij} \Delta_{jk} = \Delta_{ik}, \qquad \Delta_{ij} \xi_{j} = 0,$$

$$\Delta_{ii} = n - 1,$$

$$\partial_{j} s_{i} = \partial_{j} \xi_{i} = \frac{1}{s} \Delta_{ij}.$$

As is well known [2], the metric tensor are given by

$$g_{ij}(x) = \xi_i \xi_j + \gamma(s) \Delta_{ij},$$

$$g^{ij}(x) = \xi_i \xi_j + \gamma(s)^{-1} \Delta_{ij},$$

where $\gamma(s)$ is the function defined by

$$\gamma(s) = \left\{ egin{array}{ll} \left(rac{\sin as}{as}
ight)^2, & ext{if } k = a^2, \ \left(rac{\sinh as}{as}
ight)^2, & ext{if } k = -a^2, \end{array}
ight.$$

a being positive.

The Christoffel's symbols are

(3.2)
$$\left\{\begin{array}{l} h\\ ij \end{array}\right\} = \left(\frac{1-\gamma}{s} - \frac{\gamma'}{2}\right) \mathcal{L}_{ij}\,\xi_h + \frac{\gamma'}{2\gamma} \left(\mathcal{L}_{ih}\,\xi_j + \mathcal{L}_{jh}\,\xi_i\right).$$

LEMMA 3.1. For any constants $a_{ij} = -a_{ji}$,

$$u_i = \gamma(s) a_{ij} x^j$$

are covariant components of a Killing vector and satisfy

$$u_i(O) = 0$$
, $(\nabla_j u_i)_O = a_{ij}$.

In fact, we have

$$V_j u_i = \gamma a_{ij} + \frac{\gamma'}{2\gamma} (u_i \xi_j - u_j \xi_i)$$
.

The initial value $(V_j u_i)_o$ follows from taking account of

$$rac{\gamma'}{\gamma} = \left\{egin{array}{ll} 2\Big(a\cot as - rac{1}{s}\Big) & ext{if } k = a^2 \ 2\Big(a\coth as - rac{1}{s}\Big) \ , & ext{if } k = -a^2 \ . \end{array}
ight.$$

Next, if we put

$$\lambda(s) = \left\{ egin{array}{ll} rac{1}{as} \sin as \cos as \,, & ext{if } k = a^2 \,, \ rac{1}{as} \sinh as \cosh as \,, & ext{if } k = -a^2 \,, \end{array}
ight.$$

the following lemma holds good.

LEMMA 3.2. For any constants b_i ,

$$\begin{aligned} v_i &= \lambda b_i + (1 - \lambda)\beta(\xi)\xi_i \\ &= b_i + (\lambda - 1)\Delta_{ij}b_j \end{aligned}$$

are covariant components of a Killing vector and satisfy

$$v_i(O) = b_i$$
, $(\nabla_j v_i)_o = 0$,

where

$$\beta(\xi) = b_i \, \xi_i$$
.

In fact, we have

$$\nabla_j v_i = \mu(s) (\Delta_{ih} \, \xi_j - \Delta_{jh} \, \xi_i) v_h$$

where

$$\mu(s) = \left\{ egin{array}{ll} -a an as \,, & ext{if } k = a^2 \,, \ a anh \, as \,, & ext{if } k = -a^2 \,. \end{array}
ight.$$

Now, consider a Killing vector w^i in U satisfying

$$w_i(O) = b_i$$
, $(\nabla_j w_i)_O = a_{ij}$.

Then, it is shown that w_i is written as

$$w_i = u_i + v_i$$

with u_i in Lemma 3.1 and v_i in Lemma 3.2. Because, a Killing vector w^i satisfies

$$\nabla_h \nabla_i w_i = k(w_i g_{hi} - w_i g_{hi})$$

and is determined by its values w_i and $V_i w_i$ at O.

4. S^{2m+1} as a K_1 -harmonic space. Consider the sphere S^{2m+1} of radius 1 in the Euclidean E^{2m+2} . It is a space of constant curvature

(k=1) and admits a unit Killing vector $X=(\eta^i)$ globally. η_i satisfy

$$\nabla_h \nabla_j \eta_i = \eta_j g_{hi} - \eta_i g_{hj}$$
.

 S^{2m+1} is a typical example of Sasakian space and X is called a Sasakian structure of S^{2m+1} , [5].

If we put

$$\varphi_{ji} = \nabla_j \eta_i$$

then the following equations hold good:

$$\varphi_{ii} \eta^i = 0 ,$$

$$\varphi_{ji}\,\varphi_h^{\ i} = g_{jh} - \eta_j\,\eta_h \ .$$

We shall show that S^{2m+1} is K_i -harmonic for the Sasakian structure $X=(\eta^i)$.

Let O be a point of S^{2m+1} and U a normal neighbourhood of originary O. η^i being Killing, it is written as

$$\eta_i = u_i + v_i$$

with u_i in Lemma 3.1 and v_i in Lemma 3.2. As η^i is unit, we have

$$(4.3) b_i b_i = 1$$

by taking account of $u_i(O) = 0$ and $v_i(O) = b_i$. If we consider

$$\varphi_{ji} = V_j \eta_i = V_j u_i + V_j v_i$$

at O, then it follows that

$$\varphi_{ii}(O) = \alpha_{ii}$$

and b_i satisfy

$$a_{ii}b_i = 0,$$

$$(4.5) a_{ij} a_{ih} = \delta_{jh} - b_j b_h$$

by virtue of (4.1) and (4.2).

Thus, η_i is given by

$$\eta_i = \gamma a_{ih} x^h + \lambda b_i + (1 - \lambda) \beta(\xi) \xi_i$$

where $a_{ih} = -a_{hi}$ and b_i satisfy (4.3), (4.4) and (4.5) and

$$\gamma(s) = \left(\frac{\sin s}{s}\right)^2$$
, $\lambda(s) = \frac{1}{s} \sin s \cos s$, $\beta(\xi) = b_h \xi_h$.

The contravariant components of X are

$$\eta^{i} = a_{ih} x^{h} + \gamma^{-1} \lambda b_{i} + (1 - \gamma^{-1} \lambda) \beta \xi_{i}.$$

Now we shall calculate $\overline{\varDelta}s$ in U for $X=(\eta^i)$. From (3.1) and (3.2) it follows that

$$V_j s_i = \partial_j s_i - \left\{ egin{aligned} h \ ji \end{aligned}
ight\} s_h = \left(rac{\gamma}{s} + rac{\gamma'}{2}
ight) \mathcal{A}_{ij}$$
 ,

$$\Delta s = g^{ji} \, V_j \, s_i = (n-1) \left(\frac{1}{s} + \frac{\gamma'}{2\gamma} \right) = (n-1) \cot s$$
.

Taking account of (4.6) we can get

$$\eta^{i} \eta^{j} \nabla_{j} s_{i} = (1 - \beta^{2}) \left(\frac{1}{s} + \frac{\gamma'}{2\gamma} \right) = (1 - \beta^{2}) \cot s,$$

and hence

$$\overline{\Delta}s = \Delta s - \eta^i \eta^j \nabla_i s_i = (n - 2 + \beta^2) \cot s$$

follows. As $\beta(\xi) = b_i \, \xi_i = 0$ is valid on U_X ,

$$\overline{\Delta}s = (n-2) \cot s$$
 on U_x

holds good, which shows S^{2m+1} to be K_1 -harmonic.

- 5. **Remarks.** (i) Let S^n be the n dimensional sphere of constant curvature. If n=1, 3 or 7, S^n admits an orthonormal n-field of Killing vectors, [3]. It is also known that S^{4m+3} admits an orthonormal 3-field of Killing vectors, [6], [7].
- (ii) E^n and S^n are harmonic Riemannian spaces in the sense of H.S. Ruse. It is an open problem to find a K_1 -harmonic Riemannian space which is not harmonic.
- (iii) A harmonic Riemannian space (of C^{ω}) is an Einstein space, i.e., $R_{ij} = (n-1)kg_{ij}$ holds good. Does a K_1 -harmonic Riemannian space of C^{ω} satisfy $R_{ij} = ag_{ij} + b\eta_i \eta_j$ for some constants a and b?

Bibliography

- [1] H.S. Ruse, A.G. Walker and T.J. Willmore: Harmonic spaces, Edizioni Cremonese, Roma, 1961.
- [2] A. Duschek und W. Mayer: Lehrbuch der Differentialgeometrie, II, Riemannsche Geometrie, Teubner, 1930.
- [3] J.E. D'Atri and H.K. Nickerson: The existence of special orthonormal frames, J. Dif. Geo., 2 (1968), 393-409.
- [4] S. Sasaki and Y. Hatakeyama: On differentiable manifolds with contact metric structures, J. of the Math. Soc. of Japan, 14 (1962), 249-271.
- [5] M. Okumura: Some remarks on space with a certain contact structure, Tôhoku Math. J., 14 (1962), 135-145.
- [6] Y.Y. Kuo: On almost contact 3-structure, Tôhoku Math. J., 22 (1970), 325-332.
- [7] S. Tachibana and W.N. Yu: On a Riemannian space admitting more than one Sasakian structures, Tôhoku Math. J., 22 (1970), 536-540.