Simplexes on a Locally Compact Space

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received April 11, 1972)

§ 1. Introduction. The object composed of a compact Hausdorff space X and a convex cone C of continous functions on X has been studied in a large number of works, particularly in [2], [1], [8], [4], [6], [3]. In those papers, to the cone C is associated a preorder relation, denoted by \ll , on the set of non-negative measures on X, and a subset of X, called the Choquet boundary. Further, the existence and a characterization of maximal measures with respect to the preorder relation \ll are discussed. Assuming C containes sufficiently many functions, (X, C) is called a simplex if for any $x \in X$ a maximal measure μ satisfying $\varepsilon_x \ll \mu$ is unique. The necessary or sufficient conditions for (X, C) to be a simplex are discussed.

In this paper we shall obtain similar results in the case of a locally compact, σ -compact Hausdorff space Ω applying the theory of what is so-called an adapted cone.

- § 2. Preliminaries. Throughout this paper, Ω will be a locally compact, σ -compact Hausdorff space. We denote by $C(\Omega)$ the set of all continous real-valued functions on Ω and by $C^+(\Omega)$ the set of all nonnegative functions of $C(\Omega)$. Let P be an adapted convex cone of $C^+(\Omega)$. P is called adapted if P satisfies the following two conditions (i) and (ii);
- (i) for any $x \in \Omega$ there exists $u \in P$ such that u(x) > 0;
- (ii) for any $u \in P$, there exists $v \in P$ such that for any $\varepsilon > 0$ the set $\{x \in \Omega : u(x) \ge \varepsilon v(x)\}$ is compact.

Let us put for $u \in P$,

$$H_u = \{ f \in C(\Omega) ; \exists \lambda > 0, |f| \leq \lambda u \}.$$

Then H_g is a Banach space with norm

$$||f||_u = \{\inf \lambda ; |f| \leq \lambda u \}.$$

We shall assign to the vector space $H_p = \bigcup_{g \in p} H_g$ the topology of inductive limits of Banach spaces $\{H_g\}_{g \in p}$.

Let μ be a Radon measure on Ω . We call μ P-integrable if $|\mu|(f) < +\infty$ for any $f \in P$. We denote by \mathfrak{M}_p the space of all P-integrable Radon measures on Ω . Any positive linear form on H_p is represented by a measure of \mathfrak{M}_p^+ . \mathfrak{M}_p is dual of H_p and $\mathfrak{M}_p = \mathfrak{M}_p^+ - \mathfrak{M}_p^+$. [7], [9]

§ 3. Extremal measures. Let C be a cone with $P \subset C \subset H_p$. For any two measures $\mu, \nu \in \mathfrak{M}_p^+$ we denote by

$$\mu \ll \nu$$
 or simply $\mu \ll \nu$

if $\nu(s) \leq \mu(s)$ for any $s \in C$. A measure μ on Ω is called C-extremal (or simply extremal) if for any measure $\nu \in \mathfrak{M}_p^+$ with $\mu \ll \nu$ we have

$$\nu(s) = \mu(s)$$

for any $s \in C$. Using Zorn's lemma, for any $\mu \in \mathfrak{M}_p^+$, we may find an extremal measure $\nu \in \mathfrak{M}_p^+$ such that $\mu \ll \nu$.

We shall say that an extended real-valued function f is upper-(resp. lower) P-bounded if there exists $u \in P$ satisfying $f \le u$ (resp. $-u \le f$).

A function f on Ω is called C-concave or simply concave if for any $x \in \Omega$ and any measure $\mu \in \mathfrak{M}_p^+$ with $\varepsilon_x \ll \mu$, we have

$$\mu(f) \leq f(x)$$
.

We denote by \hat{C} the set of all lower P-bounded lower semicontinous concave functions on Ω .

A set \mathfrak{F} of extended real-valued functions on Ω is called min-stable if for any functions f_1 , f_2 from \mathfrak{F} the function $\min(f_1, f_2)$ belongs also to \mathfrak{F} .

Let μ be a measure of \mathfrak{M}_p^+ and S be a closed subset of Ω . For any function f defined on a set containing S we denote by

$$Q_{\mu}^{s,c}(f) = Q_{\mu}^{c}(f) = Q_{\mu}^{s}(f) = Q_{\mu}(f)$$

the extended real number

$$\inf\{\mu(s)\;;\;s\!\in\!C,\;s\!\geq\!f\;\text{on}\;S\}$$
 .

For any $x \in \Omega$, we set $Q_x(f)$ instead of $Q_{\varepsilon_x}(f)$. We denote also by Qf the function $x \to Q_x(f)$. Obviously Qf is a concave function. If C is minstable, then Qf is an upper semicontinous function on Ω , and we have

$$Q_{\mu}(f) = \mu(Qf)$$
 ,

since P is adapted and $P \subset C \subset H_p$.

LEMMA 1. Let f be an upper P-bounded upper semicontinuous function on a closed set S. Then for any $\mu \in \mathfrak{M}_{r}^{+}$ there exists a measure-

 $= \nu \text{ such that } \mu \ll \nu, \ \nu(\Omega - S) = 0 \text{ and }$

$$\nu(f) = Q_{\mu}^{\mathrm{S}}(f)$$
.

PROOF. Suppose first $f \in H_p$. Since the mapping $g \to Q_\mu^s(g)$ from $H_p(S)$ into R is sublinear, we may find, using Hahn-Banach's theorem, a linear functional ν_f on $H_p(s)$ such that

$$\nu_f \leq Q_u^{\rm S}$$

on $H_{p}(s)$ and $\nu_{f}(f) = Q_{\mu}(f)$. Obviously we see that

$$g \leq 0 \Rightarrow Q_u^{s}(g) \leq 0$$
.

Hence we may consider ν_f a non-negative measures on S. Particularly, for any $g \in C$, we have

$$u_f(g) \leq Q^{\scriptscriptstyle \mathrm{S}}_{\mu}(g) = \mu(g)$$
 ,

whence $\mu \ll \nu_f$.

For an upper *P*-bounded upper semicontinous function f, we can prove similarly in [3], by observing that the set $\{\lambda \in \mathfrak{M}_p^+ : \mu \ll \lambda\}$ is compact under the topology $\sigma(\mathfrak{M}_p, H_p)$.

COROLLARY. Under the same conditions, we have

$$Q^{\rm S}_{\mu}(f) \! = \! \sup \{ \nu(f) \; ; \; \nu \! \in \! \mathfrak{M}^+_p, \; \nu(\Omega \! - \! S) \! = \! 0, \; \mu \! \ll \! \nu \} \; .$$

Applying lemma 1 we can prove easily the following proposition.

PROPOSITION 1. A measure $\mu \in \mathfrak{M}_p^+$ is extremal if and only if for any $t \in -C$, we have

$$Q^{\mathrm{S}}_{\mu}(t) = \mu(t)$$
.

§ 4. Simplexes. In this section P will be an adapted cone of ${}^{\diamond}C^+(\Omega)$ and C a min-stable convex cone of $C(\Omega)$ such that $P \subset C \subset H_n$.

Let S be a closed subset of Ω . A function f on S is called C-affine or simply affine on S if for any $x \in S$ and any measure $\mu \in \mathfrak{M}_p^+$ on S satisfying $\varepsilon_x \ll \mu$, we have

$$\mu(f) = f(x)$$
.

A closed subset S of Ω is called C-determining or simply determining if any element of C is non-negative, if it is non-negative on S.

PROPOSITION 2. Let S be a determining set and g be an upper P-bounded upper semicontinous on S. Then for any concave function f on a closed set T containing S such that $f \ge g$ on S, we have

$$f \ge Q^{s}g$$
 on T .

PROOF. Let $x \in T$. By lemma 1 we may find a measure $\mu \in \mathfrak{M}_n^+$

such that $\varepsilon_x \ll \mu$, $\mu(\Omega - S) = 0$ and $\mu(g) = Q_x^S(g)$. Then for any concave-function f on T such that $f \ge g$ on S we get

$$Q_x^S(g) = \mu(g) \leq \mu(f) \leq f(x)$$
.

COROLLARY 1. Let S be a determining set and h be an upper P-bounded upper semicontinous concave function on S. Then we have

$$h = Q^{S}h$$
 on S.

COROLLARY 2. Let S be a determining set and h be a P-bounded affine function on Ω . Then, h is continous on Ω if it's restriction on S is continous.

PROOF. From proposition 2, we have $h \ge Q^s h$ on Ω and $-h \ge Q^s (-h)^s$ on Ω . Since $Q^s h \ge -Q^s (-h)$, we get $h = Q^s (h) = -Q^s (-h)$. Hence h is continuous on Ω .

PROPOSITION 3. Let S be a determining set and h be an upper P-bounded upper semicontinous concave function on Ω . Then h is non-negative on Ω if it is non-negative on S.

PROOF. Since h is non-negative on S, we have $Q^sh \ge 0$ on Ω . By proposition 2, h is non-negative on Ω .

The pair (Ω, C) is called a simplex if for any $x \in \Omega$ and any two C-extremal measures ν , $\nu' \in \mathfrak{M}_n^+$ such that $\varepsilon_x \ll \nu$ and $\varepsilon_x \ll \nu'$ we have

$$\nu(f) = \nu'(f)$$

for any $f \in C$.

Let us denote by $\mathfrak A$ the set of all upper P-bounded upper semicontinous affine functions on Ω . Then we have the following theorems which is an extention of theorem 3.1 in Boboc and Cornea [].

THEOREM 1. Let S be a determining set, @ be a cone of functions on S such that

$$-C_s^*$$
) $\subset \mathfrak{G} \subset -\widehat{C}_s$

and \mathfrak{F} (resp. \mathfrak{H}) be a set of concave (resp. affine) functions on S (resp. Ω) such that

$$C_s \subset \mathfrak{F}$$
 (resp. $\mathfrak{A} \subset \mathfrak{H}$).

Then, the following assertion are equivalent.

- a) (Ω, C) is a simplex,
- b) $Q^{s}g \in \mathfrak{A}$ for any $g \in \mathfrak{G}$,
- c) $Q^{s}(g+g') = Q^{s}(g) + Q^{s}(g')$ for any $g, g \in \mathcal{G}$,

^{*)} We denote by $C_{\mathcal{S}}$ the set of all restriction on S of elements of C.

d) for any $g \in \mathbb{S}$ and any $f \in \mathcal{F}$ such that $g \leq f$ there exists $h \in \mathfrak{H}$ such that

$$g \leq h \leq s$$
 on S .

PROOF. a) \to b) Let $x \in \Omega$ and $g \in \mathfrak{G}$. For any $\mu \in \mathfrak{M}_p^+$ with $\varepsilon_x \ll \mu$, we have $Q_{\mu}^s(g) \leq Q_x^s(g)$. On the other hand we may find a measure $\nu \in \mathfrak{M}_p^+$ such that $s_x \ll \nu$ and $Q_x^s(g) = \nu(g)$ by lemma 1. Let ν' be an extremal measure $\nu \ll \nu'$ (resp. $\mu \ll \mu'$). Then we get

$$\nu'(g) = \mu'(g) ,$$

since (Ω, C) is a simplex. Hence

$$Q_x^S(g) = \nu(g) \leq \nu'(g) = \mu'(g) \leq Q_y^S(g)$$
.

Therefore, we have

$$Q_x^{S}(g) = Q_{\mu}^{S}(g) = \mu(Q^{S}g)$$
.

This implies that the function $x \rightarrow Q_x^s(g)$ is affine and $Q^s g \in \mathfrak{A}$.

b) \rightarrow c) Let ν be an extremal measure such that $\varepsilon_x \ll \nu$. For any $g \in \mathfrak{G}$, we get

$$Q_x^S(g) = \nu(Q^S g) = Q_y^S(g) = \nu(g)$$
.

Therefore, we have

$$Q_x^{S}(g+g') = \nu(g+g') = \nu(g) + \nu(g') = Q_x^{S}(g) + Q_x^{S}(g').$$

c) \rightarrow a) Let $x \in \Omega$. For any $f \in H_p$ we define

$$p(f) = \sup\{Q_x^S(t); t \in \mathfrak{G}, t \leq f \text{ on } S\}.$$

Then we get $-\infty < p(f) < +\infty$ and $p(f) \leq Q_x^{S}(f)$.

Now we shall prove

$$-p(-f) \leq Q_x^{S}(f)$$
.(1)

From the definition of p it follows that

$$-p(-f) = \inf\{\nu(t); \ \varepsilon_x \ll \nu, \ \nu(\Omega - S) = 0, \ t \in -\mathfrak{G}, \ t \geq f\}$$

by applying lemma 1.

For any measure $\nu \in \mathfrak{M}_p^+$ on S such that $\varepsilon_x \ll \nu$ and $f \in H_p$, we get

$$\inf\{\nu(t)\;;\;t\!\in\!-\,\mathbb{G},\;t\!\geq\!f\;\;\text{on}\;\;S\}\!=\!\inf\{\nu(g)\;;\;g\!\in\!C,\;g\!\geq\!f\;\;\text{on}\;\;S\}$$

$$=\!Q_{\nu}^{s}(f)\!\leq\!Q_{\nu}^{s}(f)\;,$$

whence follows the relation (1).

Since the function $f\to -p(-f)$ is a sublinear function on H_p , we can find, by Hahn-Banach's extention theorem, a linear functional λ on H_p such that

$$\lambda(f) \leq -p(-f)$$

for any $f \in H_n$. If $f \le 0$, we have

$$\lambda(f) \leq -p(-f) \leq Q_r^S(f) \leq 0$$
.

Therefore, λ is positive and we may suppose $\lambda \in \mathfrak{M}_p^+$. Further we get

$$p(f) \leq \lambda(f) \leq -p(-f) \leq Q_x(f)$$

for any $f \in H_p$.

Particularly for any $t \in -C$, we get

$$p(t) = Q_x^{s}(t)$$
,

whence $Q_x^s(t) = \lambda(t)$.

For any extremal measure $\nu \in \mathfrak{M}_{v}^{+}$ with $\varepsilon_{x} \ll \nu$, we have

$$\nu(t) \leq Q_x^{\rm S}(t) = \lambda(t)$$

for any $t \in -C$. Hence $\nu \ll \lambda$. Since ν is extremal, we have

$$\nu(g) = \lambda(g)$$

for any $g \in C$. Therefore (Ω, C) is a simplex.

b) \rightarrow d) For any $g \in \mathfrak{G}$, and $f \in \mathfrak{F}$ such that $g \leq f$, using proposition 3, we get

$$g \le Q^s g \le f$$
 on S.

From the assumption b), we have $Q^s g \in \mathfrak{A}$.

d) \rightarrow b) Let $g \in \mathfrak{G}$, $x \in \Omega$ and $\mu \in \mathfrak{M}_p^+$ with $\varepsilon_x \ll \mu$. We denote by ν a measure of \mathfrak{M}_p^+ on S such that $\mu \ll \nu$. From proposition 2, we have

$$Q_x^{\mathrm{S}}(g) \geqq \mu(Q^{\mathrm{S}}g) \geqq \nu(Q^{\mathrm{S}}g) = \inf_{\substack{f \in \mathcal{C} \\ f \geqq g \text{ on } S}} \nu(f) \geqq \inf_{\substack{h \in \mathfrak{D} \\ h \geqq g \text{ on } S}} (h) = \inf_{\substack{h \in \mathfrak{D} \\ h \trianglerighteq g \text{ on } S}} h(x) \geqq Q_x^{\mathrm{S}}(g) \text{ ,}$$

which shows that the function $x \rightarrow Q_x^s(g)$ is affine and upper *P*-bounded.

PROPOSITION 4. Suppose that (Ω, C) is a simplex. Then any upper P-bounded upper semicontinous (resp. P-bounded continous) affine function on a determining set S may be uniquely extended to an element of \mathfrak{A} (resp. $\mathfrak{A} \cap H_p$).

PROOF. By corollary, in § 3, and theorem 1, we get $Q^sh \in \mathfrak{A}$ and $Q^sh = h$ on S. Especially, if h is continous on S, Q^sh is also continous on S. Applying proposition 3, it follows that such an extention is unique.

§ 5. Choquet boundary. In this section P will be an adapted cone of $C^+(\Omega)$ and C be a min-stable cone of $C(\Omega)$ with $P \subset C \subset H_p$.

A closed subset $A \subset \Omega$ is called stable if for any $x \in A$ and any $\mu \in \mathfrak{M}_p^+$ satisfying $\varepsilon_x \ll \mu$, we have $\mu(\Omega - A) = 0$. We denote by $\Omega^-(C) = \Omega^-$ the open set $\bigcup_{x \in C} \{x \in \Omega \; ; \; v(x) < 0\}$.

We call the Choquet boundary of C, denoted by $\delta(C)$, the set of all points x of Ω^- which is an element of a minimal compact stable set. By Mokobozki and Sibony [7], we know that if Ω^- is not empty, then the Choquet boundary is not empty and it's closure is a determining set.

We say that C is linearly separating if for any two different x, y of Ω and any $\lambda \ge 0$ there exists a $v \in C$ such that $f(x) \ne \lambda f(y)$. By Pradelle [9], we have the following proposition;

PROPOSITION 5. If P is an adapted cone of $C^+(\Omega)$ and C is a minstable, linearly separating cone of H_p with $P \subset C$, then the vector space C-C is dense in H_p .

Using this proposition, we can prove easily the following proposition;

PROPOSITION 6. If C is a linearly separating cone, the following assertions are equivalent;

- (a) (Ω, C) is a simplex,
- (b) for any $x \in \Omega$ there exists uniquely an extremal measure $\mu \in \mathfrak{M}_p^+$ with $\varepsilon_x \ll \mu$.

THEOREM 2. Suppose that C is a min-stable linearly separating cone of $C(\Omega)$ such that $P \subset C \subset H_p$ and $\Omega^- \neq 0$. Then the following two assertions are equivalent;

- (a) (Ω, C) is a simplex and $\delta(C)$ is closed,
- (b) any P-bounded continous function on $\overline{\delta(C)}$ is uniquely extended to an element of $\mathfrak{A} \cap H_v$.

PROOF. (a) \rightarrow (b) Put $\delta(C)=S$. Then S is a determining set. For any $x \in S$, any measure $\mu \in \mathfrak{M}_p^+$ with $\varepsilon_x \ll \mu$ is equal to ε_x . Therefore, it follows that any continous P-bounded function h on S is affine. By proposition 3, h is uniquely extended to an element of $\mathfrak{A} \cap H_p$.

(b) \rightarrow (a) Put $\overline{\delta(C)}=S$. Then S is a determining set. Let $x\in S$ and $\mu\in\mathfrak{M}_p^+$ with $\varepsilon_x\ll\mu$. By lemma 1, we may find a measure $\nu\in\mathfrak{M}_p^+$ such that $\mu(\Omega-S)=0$ and $\mu\ll\nu$. Further, for any $f\in C$ there exists a $h\in H_p\cap\mathfrak{A}$ such that h=f on S. By the assumption we have

$$f(x) = h(x) = \nu(h) = \nu(f) \le \mu(f) \le f(x)$$
.

Hence

$$f(x) = \mu(f)$$

for any $f \in C$ and any $\mu \in \mathfrak{M}_p^+$ with $\varepsilon_x \ll \mu$. This implies $x \in \delta(C)$, whence $\delta(C)$ is closed.

Suppose that μ , ν are extremal measures of \mathfrak{M}_p^+ satisfying $\varepsilon_x \ll \mu$ and $\varepsilon_x \ll \nu$. By lemma 1, we may find a measure μ_1 (resp. ν_1) of \mathfrak{M}_p^+ such that $\mu \ll \mu_1$ (resp. $\nu \ll \nu_1$) and $\mu_1(\Omega - S) = 0$ (resp. $\nu_1(\Omega - S) = 0$). Let $f \in C$ and h be an element of $\mathfrak{A} \cap H_p$ such that f = h on S. Then we have

$$\mu(f) = \mu_1(f) = \mu_1(h) = h(x)$$
.

Similarly, we have

$\nu(f) = h(x)$.

Hence $\mu(f) = \nu(f)$ for any $f \in C$. This implies that (Ω, C) is a simplex.

References

- [1] H. Bauer, Silovsher Rand und Dirichletshes Problem, Ann. Fourier 11 (1961), 89-136.
- [2] E. Bishop & K. de Leeuw, The representation of linear functional by measures on sets of extreme points, Ann. Fourier 9 (1959), 305-331.
- [3] N. Boboc & A. Cornea, Convex cones of lower semicontinous functions on compact spaces, Rev. Roum. Math. Pure et Appl. 13 (1967), 471-525.
- [4] G. Choquet & P.A. Meyer, Existence et unicité des representations integrales dans les convexes compacts quelconques, Ann. Fourier 13 (1963), 139-154.
- [5] G. Choquet, Lectures on Analysis, 1, 2. (Benjamin, 1969).
- [6] D.A. Edwards, Minimum-stable wedges of semicontinous functions, Math. Scan. 19 (1966), 15-26.
- [7] G. Mokobozky & D. Sibony, Cônes adaptés de fonctions continus et théorie du potentiel, Sémi. Choquet, 6 (1966/67).
- [8] G. Mokobozky, Quelques propriétés des fonctions numériques convexes sur un ensemble convexe compact, Sémi. Brelot-Choquet-Deny, 6 (1961/62).
- [9] A. de La Pradelle, A propos du memoire de G.F. Vincent-Smith sur l'approximation des fonctions harmoniques, Ann. Fourier 19 (1969), 355-370.