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§1. Introduction. The object composed of a compact Hausdorff
space X and a convex cone C of continous functions on X has been
studied in a large number of works, particularly in [2], [1], [8], [4], [6],
T8]. In those papers, to the cone C is associated a preorder relation,
denoted by <, on the set of non-negative measures on X, and a subset
of X, called the Choquet boundary. Further, the existence and a char-
acterization of maximal measures with respect to the preorder relation
& are discussed. Assuming C containes sufficiently many functions,
(X, C) is called a simplex if for any x € X a maximal measure u satisfy-
ing ¢, < ¢ is unique. The necessary or sufficient conditions for (X, C) to
be a simplex are discussed.

In this paper we shall obtain similar results in the case of a locally
compact, o-compact Hausdorff space £ applying the theory of what is
so0-called an adapted cone.

§2. Preliminaries. Throughout this paper, £ will be.a locally
compact, o-compact Hausdorff space. We denote by C(£) the set of all
continous real-valued functions on 2 and by C*(£2) the set of all non-
mnegative functions of C(£2). Let P be an adapted convex cone of C*(£).
P is called adapted if P satisfies the fcllowing two conditions (i) and
(ii) ;

(i) for any x < £ there exists w e P such that u(x)>0;
(ii) for any ue P, there exists ve P such that for any ¢>0 the set
{xe 2; u(x)=ev(x)} is compact.

Let us put for ue P,
H,={feC(®);31>0, |f|<2u}.
Then H, is a Banach space with norm
[1fllu={inf 2; |f]=2u}.
We shall assign to the vector space H,=\_ H, the topology of inductive

gEp

limits of Banach spaces {H,}..,.
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Let ¢ be a Radon measure on £2. We call ¢ P-integrable if
lul(f)<+o for any feP. We denote by 9, the space of all P-
integrable Radon measures on £. Any positive linear form on H, is-
represented by a measure of M. M, is dual of H, and M,=M; — M},

[71, 191

§3. Extremal measures. Let C be a cone with P_cCc H,. For
any two measures p, veM; we denote by

y(<§)v or simply p<v

if v(s)= p(s) for any s=C. A measure p on 2 is called C-extremal (or-
simply extremal) if for any measure v M} with < v we have

v(s) = (s)
for any seC. Using Zorn’s lemma, for any g}, we may find an.
extremal measure v M, such that px <.

We shall say that an extended real-valued function f is upper-
(resp. lower) P-bounded if there exists we P satisfying f=u (resp.-
—u=f).

A function f on 2 is called C-concave or simply concave if for any-
r< £ and any measure p= ;) with ¢, < y, we have

wN=r ().

We denote by C the set of all lower P-bounded lower semicontinous.
concave functions on £. :

A set § of extended real-valued functions on 2 is called min-stable-
if for any functions f, f;, from § the function min(f,, f,) belongs also-

to §.
Let # be a measure of 3, and S be a closed subset of £. For any-
function f defined on a set containing S we denote by

Q%) =QUN=.(=Q.S)
the extended real number
inf{u(s); s=C, s=f on S}.

For any x <, we set Q,(f) instead of Q.. (f). We denote also by QJf the:
function 2—@Q,(f). Obviously Qf is a concave function. If C is min--
stable, then Qf is an upper semicontinous function on £, and we have

Q(N)=u@QS),
since P is adapted and PcCc H,.

LEMMA 1. Let f be an upper P-bounded upper semicontinuous-
Sunction on o closed set S. Then for any psI;) there exists a measure:
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2 such that p<y, v(2—-S)=0 and
HN=QU.

PROOF. Suppose first feH, Since the mapping g—Q5(g9) from
H,(S) into R is sublinear, we may find, using Hahn—Banach’s theorem,
- linear functional v, on H,(s) such that

y=Q
-on H,(s) and »(f)=@Q,(f). Obviously we see that
| 9=0=Q5(9)=<0.
Hence we may consider v, a non-negative measures on S. Particularly,

for any g C, we have
_ v(9) = (9)=p(9) ,
“‘whence g < vy.

For an upper P-bounded upper semicontinous function f, we can
prove similarly in [3], by observing that the set (A=W} ; p< 1} is com-
Ppact under the topology o(M,, H,).

COROLLARY. Under the same conditions, we have

Q) =sup{p(f); veM;, v(P—-S)=0, p<y}.
Applying lemma 1 we can prove easily the following proposition.

PROPOSITION 1. A measure peM} is extremal 1f and only if for
any te —C, we have

Q)= p(2) .

§4. Simplexes. In this section P will be an adapted cone of
«CT(2) and C a min-stable convex cone of C(2) such that Pc Cc H,,.
Let S be a closed subset of 2. A function f on S is called C-affine
or simply affine on S if for any xS and any measure g} on S
satisfying ¢, < g, we have
u( ) =S (x).

A closed subset S of 2 is called C-determining or simply determin-
ing if any element of C is non-negative, if it is non-negative on S.

PROPOSITION 2. Let S be a determining set and g be an upper P-
bounded upper semicontinous on S. Then for any concave function f on
a closed set T contaiming S such that f=g on S, we have

f=Q% on T.

PROOF. Let x=T. By lemma 1 we may find a measure g7
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such that ¢, < g, p(2—S)=0 and w(9)=Q%5(9). Then for any concave:
function fon T such that f=g¢g on S we get

QL) =umo) = uf)=r(x).

COROLLARY 1. Let S be a determining set and h be an upper P-
bounded upper semicontinous concave funmction on S. Then we have

h=@% on S.

COROLLARY 2. Let S be a determining set and h be a P-bounded:
affine function on 2. Then, h 1is continous on 2 if it’s restriction on.
S is continous.

PROOF. From proposition 2, we have A=Q% on £ and —h=Q5(—h)
on £. Since Qh= —Q5(—h), we get h=Q5h)=—@5(—h). Hence # is.
continous on £.

PROPOSITION 3. Let S be a determining set and h be an upper P-
bounded upper semicontinous concave function on 2. Then h 1is non-
negative on £ if it 1s mon-negative on S.

PROOF. Since & is non-negative on S, we have Q=0 on £. By
proposition 2, & is non-negative on £.

The pair (2, C) is called a simplex if for any x= 2 and any two C-
extremal measures v, v/ = M, such that ¢, < v and ¢, <" we have

v(f)=2(f)
for any feC.
Let us denote by U the set of all upper P-bounded upper semi--
continous affine functions on £. Then we have the following theorem:
which is an extention of theorem 3.1 in Boboc and Cornea [ ].

‘ THEOREM 1. Let S be a determining set, & be a cone of functions:
on S such that

—CS:})C@C'—@

and § (resp. D) be a set of concave (resp. affine) functions on S (resp..
Q) such that .
CsCF (resp. ACH).
Then, the following assertion are equivalent.
a) (£, C) is a simplex,
b Qg for any g O,
¢) Q(9+9)=Q%9)+Q%g") for any g, g,

*) We denote by Cs the set of all restriction on S of elements of C.
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d) for any g® and any feF such that g< f there exists heD
such that
g<h=s on S.

PROOF. a)—b) Letxe and g ®. For any peM; with ¢, <4,
we have Q5(9) <Q3(9). On the other hand we may find a measure v M
such that s, < v and Q3(9)=v(9) by lemma 1. Let v/ be an extremal
measure v <y (resp. u< /). Then we get ’

V(9)=1¢/(9),
since (£, C) is a simplex. Hence
Q9 =x(9)=V(9)=p(9)=Q}(9) .
Therefore, we have
Q(9)=Q(9) = (@) .

This implies that the function z—Q%(g) is affine and Q5g= .

b)—c) Let v be an extremal measure such that ¢, <v. For any
g ®, we got

Q(9) =v(Q°9)=Q(9) =»(9) .
Therefore, we have
QAg+9)=v(9+9)=v(g) +v(¢") =Q3(9) +Q(9) .
c)—a) Letxef. For any fe H, we define
' p(f)=sup{QS®); te®, t<f on S}.

Then we get — co <p(f) < + co and p(f) £ Q3(S).
Now we shall prove

—P(—F)=SRS) e et 1)
From the definition of p it follows that
—p(—=f)=inf{@); e, <y, (L—-8)=0, te —O, t=f},
by applying lemma 1. |
For any measure ve M on S such that ¢, <v and fe H,, we get
inf{p(t); te —®, t=f on S}=inf{r(g); 9=C, g=f on S}

=N =),
whence follows the relation (1).
Since the function f— —p(—f) is a sublinear function on H,, we
can find, by Hahn-Banach’s extention theorem, a linear functional 2 on
H, such that

)= —p(—1)
for any fe H,. If f<0, we have

A= —p(—=QNH=0.
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Therefore, 2 is positive and we may suppose 2 0.
Further we get
p(f) =)= —p(—)=Q.())
for any fe H,.
Particularly for any te —C, we get

p(t)=Q3(t),
Whence Q3(t)= Z(t)
For any extremal measure ve M} with ¢, <y, we have
y(t) = Q:(t) =4(1)
for any te —C. Hence v< A. Since v is extremal, we have
v(9) =4(9)
for any g C. Therefore (£, C) is a simplex.
b)—d) For any g, and fePF such that g</f, using proposition
3_, we get
g=Q9=f on S
From the assumption b), we have Q°g= .
d)—Db) Let ge®, xe2 and peM; with ¢, < p. We denote by v a
measure of IM; on S such that < v. From proposition 2, we have
Q(9) = m@g )>v(ng)— mf v(f )= mf (h)— mf h(x) = Q3(9) ,

fZg on § h>g on S h>gonS

which shows that the function x—Q%3(g) is affine and upper P-bounded.

PROPOSITION 4. Suppose that (£2, C) is a simplex. Then any upper
P-bounded upper semicontinous (resp. P-bounded continous) affine function
on o determining set S may be uniquely extended to an element of U
(resp. AN H,).

PROOF. By corollary, in §38, and theorem 1, we get Q%he U and
QSh=h on S. Especially, if & is continous on S, Q% is also continous on
2. Applying proposition 3, it follows that such an extention is unique.

§5. Choquet boundary. In this section P will be an adapted
cone of C*(£2) and C be a min-stable cone of C(2) with Pc Cc H,.

A closed subset AcC £ is called stable if for any x= A and any
peMm; satisfying e, < p, we have u(2—A)=0. We denote by 2-(C)=£2-
the open set Uc{me.Q; v(w) <0}.

We call the Choquet boundary of C, denoted by d(C), the set of all
points « of £~ which is an element of a minimal compact stable set. By

Mokobozki and Sibony [7], we know that if 2~ is not empty, then the
Choquet boundary is not empty and it’s closure is a determining set.



July 1972 Simplexes on a Locally Compact Space 41

We say that C is linearly separating if for any two different x, ¥
of 2 and any 1=0 there exists a ve C such that f(x) - 1f(y). By Pradelle
[9], we have the following proposition ;

PROPOSITION 5. If P is an adapted cone of CT(£2) and C 1s a min-
stable, linearly separating cone of H, with PCC, then the vector space
C—C 1is dense in H,.

Using this proposition, we can prove easily the following proposi-
tion ;

PROPOSITION 6. If C 1s a linearly separating cone, the following
assertions are equivalent;

(@) (2, C) is a simplex,

(D) for any x< R there exists uniquely an extremal measure p<= M}
with e, < p.

THEOREM 2. Suppose that C is a min-stable linearly separating cone
of C(2) such that PCCc H, and 2-+0. Then the following two assertions
are equivalent ;

(@) (£, C) is a simplex and 6(C) is closed,

(b) any P-bounded continous function on 6(C) is uniquely extended
to an element of ANH,.

PROOF. (a)—(b) Put 6(C)=S. Then S is a determining set. For
any xS, any measure pg< M, with ¢, < ¢ is equal to ¢,. Therefore, it
follows that any continous P-bounded function A on S is affine. By
proposition 3, & is uniquely extended to an element of AN H,.

(b)—(a) Put 6(C)=S. Then S is a determining set. Let x=S and
peM; with e, < . By lemma 1, we may find a measure ve M} such
that w(2—S)=0 and pg<v. Further, for any feC there exists a
he H,NA such that A=fon S. By the assumption we have :

f@)y=n@)=vh)=v(f) = (/) =f ().
Hence
J (@)= p(f)
for any feC and any pe I} with ¢, < . This implies x=d(C), whence
o(C) is closed.

Suppose that p, v are extremal measures of M, satisfying e, < p
and e, < v. By lemma 1, we may find a measure g, (resp. v,) of M such
that p< g, (resp. v<y) and g (2—S)=0 (resp. v (2—S)=0). Let feC
and h be an element of AN H, such that f=h on S. Then we have

.u(f):ﬂx(f) :ﬂl(h):h’(x) .
Similarly, we have
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v(f)=h(x).

Hence u(f)=v(f) for any fe C. This implies that (£, C) is a simplex.
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