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S§1. Introduction. We are concerned with the quasi-Denjoy
wntegration introduced by Iseki[1]. It was invented as a generalization
of the Denjoy-Khintchine process of integration for functions of one
real variable.

At the end of [1] there was given a sketched account of a family
of functions which are GHC (see [1], §8), without being GAC (i.e.
ACG ; see [2], p. 223), on the unit interval [0, 1]. It thus turned out
that the quasi-Denjoy integration is actually wider than that of
Denjoy-Khintchine.

It is the object of the present paper to deal in detail with the for-
mation of the above family. This will occur as follows: Fixing first
a positive constant 0<<1, we shall attach to each closed interval I a
continuous function P(x) depending on 4, among others, and fulfilling
certain conditions. This procedure, which is somewhat complicated,
will constitute the subject matter of §2. Once F(x) is obtained, it is
easy to construct a continuous function B(x)= B(«x ; J, P), which will be
shown afterwards to be GHC, but not GAC, on [0, 1]. The construction
of this function, as well as the verification, not quite simple, of its
mentioned property, will be our concernment in §3. Our required
family of functions will be no other than the totality of the functions
B(x ; d, P) for all choices of ¢ and P.

The term function will exclusively mean a point-function defined
on the whole real line R and assuming finite real values, unless
another meaning is implied by the context. By intervals, by them-
selves, we shall always understand linear non-degenerate closed inter-
vals. If fis a function and J an interval, the symbol f(J) will denote
the increment of fon J, while the image of J under the mapping f will
be written f[J], in conformity with Saks [2] (p. 99 and p. 100). The
letter U will be reserved for the unit interval [0, 1]. The symbol |J|
will stand for the length of an interwval J.

§ 2. Construction of the func_tion P(x). Given a positive
number d<<1 and an interval I=[a, b], consider in I an increasing
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infinite sequence of points d1<a2<--- tending to the point b, where

we require that a,=a. We shall write for brevity I,=[a,, a,.,]
(%:1’ 2’ ..,./)'

LEMMA 1 (see [1], §7). The above sequence a,<<a,<<--- can be so
chosen as to satisfy the following condition (i) and, furthermore, to
ensure the existence of a monnegative continuous function F(x) vanish-

g outside the interval I= [a b] and subject to the conditions (ii) to (v)
below :

ONDS uw_ltﬁ<i 1]

(i1) P(x) s a const(mt on each odd- numbered mterval (where
n=1, 2, ...); ’

© (iil)  P(x) is limear in x, but not a constant, on each even- numbered
wnterval I, (n=1, 2, ..+);

27"1

(iv) 2” | P(1,,)|= + oo, so that P(x) is not of bounded variation on I;
n=1 : ’
(v)y |P(J) ["<]J]5 Sor every interval J (which need not lie in I).

PROOF. Writing h=46"" for blev1ty and choosmg a number o such
that 1<a<h let us put

=~_1[|6 A LI A (2h)
2((0{)
where ({ is the R1emann zeta- functlon Then A*((2h)=4"".]I|- C(2h)
But {(Zh)<c(2)<1+z ey and so >0
n(n+1)

We now determlne the required sequence <@, ... mductively as
follows (m=1, 2, -.+): : :

a’1>: a ’ ' )
Aym—g™= T3 { ”(W—] ; gy = Ty T ——
o A n M

We then have .

11m a —a—{—f‘ ( A ) —1—251

oo - m=1 ma
- =a.3r-A”C(2h)Jq.lI l—A’T(zh)=b,
Moreover 4 |
o0 I~ A ns oo 1 ,
S P=3 (T> —A-c@)<2A=|IP.
n=1 n=1 _ o

Q‘on.s“eqﬁe'ntly condition (i) is satisfied..
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Making use of the above sequence <a,>,_,,.. , we construct a non-
negative function P(x) as follows (where m=1, 2, .-+):

0o . when x&1, ,,
A,-(*—a,,_,) when &1, ),
Pxy={! A, |1l when z&1, .,
A, (@, —2) when a&1,,,
0 when xz=R—I°,
o— . .
where Amzé__<—]£[~> ' and I° means the interior of I.
ma
Needless to say, the function P thus defined fulfils conditions (ii)
d
and (iii). By the relation A,.|I,, |~ _;_<_5‘£> .0 (as M—>-Fo0) WO
me _

find further that P is continuous. We have also

SPL) =2 3 | P |2 3 A | L

since 1<<a<Ch=0"'. This establishes condition (iv). .

It remains to verify condition (v) which asserts that | P(J)|<<|J|?
for every interval J=[u, v]. For this purpose, it is convenient to
premise the following considerations: ‘

(a) If u, veEl, then P(u)=0=P(v), so that P(J)=0

(b) if ucFIl and v&1, then necessarily u<<e and P(u)=0=PF(a), so
that P(J)= P(v)— P(a), where 0=v—a<<|J]|

(c) similarly, if w&I and vdel, then P(J)= P(b)— P(u), where we
have 0<b—u<<|J]|;

(d) if weI and v=>, then there exist in the interior of J points »/
at which P(v')=0=: P(v).

In view of (a)~(d) above, it suffices to consider the case J—[a, b).
Noting that [a, b):OIn, suppose first that J< I, for some n. Then,
n=1

P(J) vanishes if the number » is odd, while we find for even n that
1P(J)|=2"1.]L,|°"'-|J|<|J|°. Thus condition (v) is satisfied.

In what follows, we may thus assume that uc1, and v&=1,,, where
n<<m. When n is odd, then by condition (ii) the function P takes the
same value at the point w# and at the left-hand extremity of I,,,..
Hence we may restrict-to even values of n. S1m1lar1y, m may also be
assumed even. -

For later use let us observe here that
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P(I]=[0, 27'[[,]"] for [=2,4,6, .

The inclusions P[I,]DP[I,]D--- are also worthy of note.
This being g0, we proceed to treat the following five cases sepa-
rately :
(1) mn=47—2 and m=4j;
(2) m=47—2 and m>47;
38) m=45 and Pu)=Pw);
(4) m=4j, m=4k—2 and Pu)<<F@);
(5) m=4j, m=4k and Pu)<<Pv);

where j=1, 2, --- and k=5+1,7+2, .-..

re(1): In this case, P(x) increases on I, and decreases on [,, and
moreover P[I,]=[0, 27| 1°]1=[0, 27| ,|°]=P[l,]. Accordingly, either
there is in I,, a point w'<<v at which P(w')= P(u), or there is in I, a
point v'=u at which P(v')=P(v). We are thus reduced to the case JCI,
(I even) considered already.

re(2): Since P[I,Jc P[l,;], there is in I, a point v<<vw at which
P(v'")= P(v), and the required result follows from case (1).

re(3) : Noticing that P(x) decreases on I,, we can find in I, a
point ¥ >=u at which P(¥')= P(v), and the problem reduces to the case
J I, i

re(4): In this case, we need only choose in I, a point w/<w at

which P(u')=P(u).

re(5): There is in I, a point 4'>>v at which P(w')= P(u). But we.
have w'—v<\|I,|<|1,;.,|<<v—u. Hence the result.

This completes the verification of condition (v).

§3. The GHC function B(x) which is not GAC.

Given a positive numbér §<1, suppose we have attached to each:
interval I=[a, b] a continuous function P which conforms to the
import of Lemma 1 and is otherwise arbitrary. On account of condi-
tions (ii) and (iii) of the same lemma, the sequence <a,> is then
uniqﬁély? associated with I. Whenh we make mention of (a,> and P
later on, we.shall write .

- C.Ln_="OLVn(VI’) for évefs{ n and P(x)=Px; I)

in éase definiteness of notation is required: -

~Generally following the indication of [1], but deviating from it in
some minor points,:-we now go on to.construct a function which is
GHC, but not GAC, on the unit interval U=[0, 1]. Let us begin with
the following : R
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DEFINITION. If f(x) is a continuous function and J an interval,
then any maximal interval contained in J and on which fis a constant,
will be called maximal interval of constancy for f relative to J.

EXAMPLE. For each interval I, the maximal intervals of con-

stancy for P(x; I) relative to I are exactly the intervals [a,, (1), @,.(I)],
where n=1, 2, --..

LEMMA 2. Gwen a continuous function f(x) and a real constant
c#0, let F(x) be the indentatron (see [1], §7) of f(x) and suppose that
the function g(x)=f(x)+cF(x) is a constant on an interval I. Then [f(x)
and F(x) are likewise each a constant on I.

PROOF. It suffices to show that F(«x) is a constant over I. Suppose,
if; possible, that this is false, so that F[I] is a non-countable set by
continuity of F. It follows at once, in view of the definition of the
indentation F, that the function f has at least one maximal interval of
constancy relative to U. As we find furthermore, the maximal open
intervals contained in U and on which F is separately a non-constant
linear function can be arranged in an infinite sequence O, O,, ---
Plainly, the function fis a constant on each O,. Again, the indentation
F assumes at most a countable infinity of values outside the union
\JO,. But F[I] is non-countable as already mentioned, and so the

interval I must intersect some one of the intervals O,, say O,. Then
Jf(x) is a constant on the interval I/ O,, whereas F(x) is not. This con-
tradicts the constancy on I of the function g(x)=f(x)+ cF(x) and com-
pletes the proof.

DEFINITIONS AND NOTATION. The letters =, 1, 7, p, ¢ will denote
positive integers in the following lines.

(1) Consider the ordered pairs of positive integers. We can
arrange all of them in a distinct sequence, as follows :

<1; 1>? <17 2>, <27 1>y <1, 3>, <2, 2>’ <3, 1>9 <11 4>; <27 3>: Ctty
‘wherein <{p, ¢> precedes <p/, ¢'> if and only if either
(a) p+eo<<p'+¢, or (b) ptq=p'+q¢ and p<p.

When <p, ¢ is the i-th pair in the above sequence, we shall write
<p, @> = $2(1) temporarily.
(2) We define the intervals K;" and the intervals K;?, by induction
on n, as follows (the letter U always means the unit interval):
Kz'lz [azi—1(U): a’zi(U)] ’ sz=[a2j_1(Kin), a’gj(Kin)] ’

Ki”“:K;fq where '<]9, @ =8(1).
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It is clear that, when » and ¢ are fixed, the intervals K., (where
J=1,2,...) are no other than the maximal intervals of constancy for
P(x; K;) relative to K;'.

(3) We shall write for brevity K"=\_J K", so that K""=\J\J K/,

=1 i=1

Jj=1
Clearly K'DK*D-.-, that is, the sequence <K"),_, ,.. is descending.
(4) We shall also write & ={K};,_,,., so that & is a disjoint
collection of intervals for every n.
(5) We define the sets L;*! and the sets L™ by

L=k —\JK,  and  L™=\JLi.
=1 i=1
On the other hand, we set L'=U—K".

REMARK. It should be noted that no sets L; have been defined.

LEMMA 3. Gwen a nonwoid disjoint collection M of intervals con-
tained wn U, let us write

H(x)=H(x; W)= > Px;I) for z=R.

Then H(x) is a monnegative continuous function vcmishiﬁg outside U.
Moreover, H(x)<<1 for every x and |H(J)|<<|J|® for every interval J.

REMARK. Evidently, the collection I is at most countable.

PROOF. Let us fix any interval I&It and consider the function
S(@)=P(x; I) of Lemma 1. This function is nonnegative and vanishes.
outside the interior of I. We have further |f(J)|<|J|® for every
interval J, by condition (v) of the same lemma. It follows from this.
inequality and f(0)=0 that f(x)<<1 on U. We then have f(x)<<1l for
every . . o
The above consideration shows at once that H(x) fulfils 0<H(x)<<1
for every « and vanishes outside U. Also the inequality |H(J)|<|/J}?
follows easily from the above, if we write J=[«, f] and examine the.
following five cases separately:

(1) One of the intervals I, I,, -.- contains both a« and g;
(2) both @ and B are situated outside [, I,, ---;

(3) a<I, for some p, but B belongs to none of I, I, ---;
(4) pB<l, for some g, but a belongs to none of I, I,, ---;
(6) acl, and =1, for some p and some ¢, where p+q. ‘

The inéqu_ality.just c'>bvtained plainly implies the continuity of H(x),
and the proof is complete.

DEFINITIONS. Let us define.two sequences of functions <H,> and
{B,>, where n=0, 1, ... We set first identically
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Hyx)=P(x; U) and B,(x)=0.
Using the funcition H(x ; M) of Lemma 3, we define further (n=1, 2; .er)

Hy@)=H@; &),  Bie)=> 2 H),
B(w)=1lim B,(#)= > 2~ Hy(x)

REMARKS. (i) OClearly B,, (%)= By(@)-+ 2 "H,(%) for n=0, 1, -- .
(ii) The sequence <B,>,_,,,.. as defined above differs slightly from

the sequence <P, )n-y,,.. 0f [1], §7. But this is immaterial for our
purposes. :

LEMMA 4. Thus defined, B(x) is a nonnegative continuous function
vanishing outside U. Moreover, it is SC(3) on the whole real line (see

(1], § 2).

PROOF. The first half of the assertion is obvious by Lemma 3,
especially by the relation 0<H(x)<<1. The second half, too, follows
directly from that lemma. In fact, for every interval J,

|BU) =3 2 ) =327 TP =2] TP

LEMMA 5. For each n=1, 2, ..., the maximal intervals of constancy
for B,(z) relative to U are exactly the intervals K, K, .--. Thus, the
Junction H,(x) is the indentation of B, ().

REMARK. The second half of the assertion holds good for n=0
also. In fact, -H,(x) is the indentation of B (x).

PRrROOF. Denoting the assertion by A(n), we shall prove it by
induction. A(l) is obvious, since B(x)=H,(x)=P(x; U). Assuming
next the truth of A(n), where n is fixed, we shall deduce that of
A(n+1). ’

Given any interval J, let us denote for the nonce by IM(J) the
collection of the maximal intervals of constancy for B,, (x) relative to
J. Since B,,,(x)=B,(x)+ 2 "H, (x), we infer by the assumption A(n) and
Lemma 2 that each interval of the collection MN(U) is contained in K[
for some i=1, 2, ---. It therefore suffices to prove M(K)={K},_.,..
for each 1. : S -

B,(x) on K, we find that SR(K]") consists of the maximal intervals of
constancy for H,(x) relative to K. But precisely these intervals con-
stitute together the collection (K.}, ,:. , since H,(x), by: definition,
coincides with P(x ; K;") on K;". This completes the proof.

In view of the above expression for B, (x) and the constancy of
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REMARK. The lemma established just now shows how our func-
tions By(z), B,(x), --- are connected with the lines of thought of [1], § 7.

In the rest of this paper, we shall not require the full assertion of
the above lemma, but only the partial result that the function B,(x) is
a constant on each of the intervals K", K, ---. This latter result can
readily be proved without having any recourse to Lemma 2.

LEMMA 6. 3| KP[l<<2" (n=1, 2, ---).
=1

PROOF. Denoting this inequality by A(n), we shall derive it by
induction. A(1l) is a special case of condition (i) of Lemma 1. Thus it
~ is the point to ascertain A(n-+1) under the assumption A(n). Succes-
sively using the same condition and A(n), we find that

S K ‘5:2"’; (: | K}, P)g%f | K)P<2-*1, as required.
1= Jj= f==

—d
k=1 1
LEMMA 7. \JL'=U—K" (n=1, 2, --).
=1

PROOF. To prove this relation inductively, let us denote it by
A(n). Then A(1) merely restates the definition of the set L'. Suppose
next that A(n) is true. The definition of L™ shows that

. @1 ( Kn__@l K'y=K'— K™
= =
where K"" c K". Hence it follows by A(n) that
’Qle= (Q L)L = (U— K™ L™ = U— K™
iz e
which completes the proof.
LEMMA 8. The function B,(x) is GAC on the set L" for n=1, 2, ... .

PROOF. This is obvious when n=1, since the set L'=U— K" is
composed of one point and a countable infinity of open intervals on
each of which the function B,(x)=H(x)=P(x; U) is linear.

Suppose now n>1 and consider any =1, 2, ..-. We have identi-
cally B,(z)=B,_,(x)+2"""H,_(x). But H,_ (x)=Px; K;'") for z& K.
The same argument as for the case n=1 then shows that H,_ [(x) is

GAC on the set LZ‘:K{"”—OK{‘JTI. Noticing that B, ,(x) is a constant
J=1
on K"' by Lemma 5, we conclude that B,(») is GAC on L;. This com-

pletes the proof, since 4 is arbitrary and L":GL?.
i=1
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LEMMA 9. We have B(x)=B,(x) for x&L" (n=1, 2, --+).

PROOF. Let n be fixed and consider any integer m>n. The func-
tion H,(x)=H(x ; &) vanishes on the set U— K™, and Lemma 7 implies
that U— K™"DL". Thus H,(x)=0 on L" for m=n, n+1, -.-. It follows
at once that

B@)=3 2 H (#)=3 2 H,(x)=B,(w) for z<L".
i=0 =0
LEMMA 10. The function B(x) is GAC on the set L—\ JL".
n=1

PROOF. This is a direct consequence of the preceding two lemmas.

NOTATION. Throughout the rest of the paper, the letter L will
retain the meaning specified above and we shall write E=U—L.

LEMMA 11. Ezf‘o\K”.
n=1

PROOF. This follows immediately from Lemma 7, as follows:

[ee]

E=U—\JL'=U—\J \JL =\ (U—\JL)=NK".
n=1 j=1 Jji=1 n=1

n=i n=1

LEMMA 12. 4,(E)=0 (see [2], p. 53).

NOTATION. The diameter of a linear set X will be denoted by d(X).
PROOF. Let n be any positive integer. Then Ec K" by the fore-
going lemma. Hence, if we write E;'=FE/\ K;' for brevity, we have
E=QE1” On account of Lemma 6, this partition of E has the property
SAENP<S | KI?<2", and hence d(E})<2 4 for i=1, 2, --- .
- Given aglarbitrary e>0, take a positive integer N so as to satisfy

b

2 9 <<e. By what has already been established, we obtain A (E)<<2™"
for every m>N. This gives A§(E)=0, whence we deduce 4, E)=0 by
making e—0--.

LEMMA 13. The closure E of E contains both the extremities of

every interval belonging to the collection \ ) &".
. n=1

PROOF. Consider any interval K;'=[a, b] of & . We shall first
prove that a=FE. We have E:ﬁK’" by Lemma 11, where K!DK*D..-.

m=1

Hence it suffices to show that a=K™ for every m>n. More precisely,
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for each m>>n, there is in the collection &" an interval whose left-hand
extremity is a. This is obvious by induction on m.

It remains to show that b K. Writing for short a;,=a,(K;") for
j=1, 2, ..., we have K;,;=[a,, ,, a,,]J&&"". Hence a,; & FE for every j,
by what has already been proved (where % is replaced by n-+1). Then
b=lim a,; & F, which completes the proof. '

J

THEOREM. The function B(x) 1s GHC, without being GAC, on U

and so the approximate derivative of B 1is Q-integrable, without being
D-integrable, on U.

PROOF. Lemmas 4,10 and 12 ensure together that B(x) is GHC
on U.

Suppose now, if possible, that B(x) is GAC on U. On account of
Theorem 9.1 of [2], p. 233, the nonvoid closed set E contains a portion
S (see [2], p. 41) on which B(z) is AC (see [2], p. 223). Let z, be a point
of S. There then exists, by Lemma 11, a sequence of intervals J,, J,, -
such that x,=J,c8&" for n=1, 2, ... But we have |Jn]<2—% for every

n by Lemma 6. Hence we can choose a positive integer m such that
ENJ,cS. Let us fix this m in what follows.

The interval J,&8&" coincides with one of the intervals K., K;", -+,
say K. We shall write a;=0a,K) and I,=[a,, a,,.,] for j=1, 2, ..
Since I,;_,= K, &"" for every j, we find by Lemma 13 that «,&F for
every j. It follows at once that a,c BN\ K;"CS for every j. ,

Now the fumction H,(x), by definition, coincides on K;* with the

function. P(x)= P(z ; K;"), and we have i | P(I,;)| = + oo as condition (iv)

of Lemma 1 asserts. On the other ha:r;al, Lemma 9 shows that
B(x)=B,,. (x)=DB,(x)+ 2 "H,(x) for ==L .

And this relation holds on the closure L;"*', too, by continuity of the

involved functions. But LI"'=K" —HIN_I, so that the points a,, a,, ---

belong to LI*'. Besides, B, () is a constant on K" in virtue of Lemma
5. Collecting the above results, we derive

2By |=2"" ? | H,\(1,5) | =27 5‘ | P(L) | = + oo
This contradicts the absolute contmulty of B(x) on the portlon S and

completes the proof.
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