Balayages of Measures and Dilations on Locally Compact Spaces

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received September 10, 1971)

- § 1. **Preliminaries.** Let K be a compact, convex and metrizable set in a locally convex topological vector space. In [1] P. Cartier, J.M. Fell and P.A. Meyer proved that for two positive measures λ , μ on K, the following statements (a) and (b) are equivalent;
- (a) μ is a balayage of λ ,
- (b) there exists a dilation T such that $\lambda T = \mu$.

Here we say that a Markov kernel T on the Borel σ -field of K is a dilation on K if $r(\varepsilon_{\alpha}T) = x$ for $x \in K$. P.A. Meyer extended this theorem by applying a theorem of Strassen [7];

Let K be a compact metrizable set and φ be a cone of continuous functions on K, containing positive constants and closed under the operation "inf". For two positive measures λ , μ on K, the following (a), (b) are equivalent;

- (a) μ is a balayage of λ with respect to φ ,
- (b) there exists a φ -dilation on K such that $\lambda T = \mu$. [5]

In this paper we shall extend this theorem to the case of locally compact, σ -compact K. We shall use the theory of adapted cone introduced by G. Choquet [2] and developed by G. Mokobodzki and D. Sibony [6].

$\S 2$. The integrations of filtering families of continuous functions.

Let Ω be a locally compact, σ -compact space and u, v be two real-valued functions ≥ 0 on Ω . We shall write $u \uparrow < v$, if for any 9>0, there exists a compact $K \subset \Omega$ such that

$$x \in K^{c(*)} \Rightarrow v(x) \leq \varepsilon u(x)$$
.

PROPOSITION 1. Let μ be a positive Radon measure on Ω , and f a lower semicontinuous function on Ω such that there exist a μ -integrable

^(*) For a subset $A \subseteq \Omega$, we denote by A^c the complement of A.

 $g \ge 0$ satisfying $|f| \uparrow < g$. Further, let $\{f_{\alpha}\}$ be an increasing filtering family of positive continuous functions on Ω such that $\sup_{\alpha} f_{\alpha} = f$. Then we have

$$\int f d\mu = \sup_{\alpha} \int f_{\alpha} d\mu .$$

PROOF. From $f \uparrow \langle g$, for any $\varepsilon > 0$, there exists a compact K such that $f(x) \leq \varepsilon g(x)$ on K^c . This implies

$$\int f d\mu = \int_{k} f d\mu + \int_{k^{c}} f d\mu \leq \sup \int_{k} f_{\alpha} d\mu + \varepsilon \int g d\mu .$$

Hence

$$\int f d\mu - \sup \int f_{\alpha} d\mu < \varepsilon \int g d\mu .$$

from which follows

$$\int f d\mu = \sup \int f_{\alpha} d\mu .$$

Similarly we have the following proposition.

PROPOSITION 2. Let μ be a positive measures on Ω , f an upper semicontinuous function on Ω and $\{\varphi_{\alpha}\}_{\alpha\in\mathfrak{A}}$ a decreasing filtering family of positive continuous functions on Ω such that $\inf \varphi_{\alpha} = f$. Assume that there exists a positive, μ -integrable function g such that $|f| \uparrow < g$. Then we have

$$\inf \int \; arphi_{lpha} d\mu \! = \! \int \, f d\mu \; .$$

§ 3. Adapted cones and balayages of measures.

Let Ω be a locally compact, σ -compact space. Let P be a convex cone of positive continuous function on Ω . We call P adapted if P satisfies the following condition;

- (i) for any $x \in \Omega$ there exists $g \in P$ such that g(x) > 0,
- (ii) for any $g \in P$ there exists $h \in P$ such that $g \uparrow < h$.

Let V be a vector space of continuous functions on Ω . We call V adapted if we can write $V=V^+-V^+$ where $V^+=C^+(\Omega)$ and V^+ is an adapted cone. Let us put for $g \in C^+(\Omega)$,

$$H_g = \{ f \in C(\Omega) ; \exists \lambda > 0, |f| \leq \lambda g \}.$$

Then $H_{\rm g}$ is a vector space and a Banach space with norm

$$||f||_g = \{\inf \lambda ; \exists \lambda > 0, |f| \leq \lambda g\}.$$

Let $P \subset C^+(\Omega)$ be a cone. Then the space $H_p = \bigcup_{g \in p} H_g$ is a vector space. We shall assign to H_p the topology of inductive limit of Banach

spaces $\{H_v\}_{g\in p}$.

Let μ be a positive Radon measure. We call μ P-integrable if $\mu(|f|) < + \infty$ for any $f \in P$. We denote by \mathfrak{M}_p^+ the space of all P-integrable positive measures. If P is adapted, any positive linear form on H_p is represented by a measure of \mathfrak{M}_p^+ . [6]

Let C be a cone of $C(\Omega)$. For positive measures λ , μ on Ω , we shall write $\lambda \ll \mu$ if $\mu(f) \leq \lambda(f)$ for any $f \in C$, and we shall say that μ is a balayage of λ with respect to C.

Assume that $P \subset C \subset H_p$. If for each $g \in H_p$, we define

$$\hat{g}(x) = \inf\{f(x); f \geq g, f \in C\}$$
,

then we have $|\hat{g}(x)| < +\infty$. In particular if C is an min-stable cone, which means that C is closed under the operation "min", g is upper semicontinuous.

PROPOSITION 3. Let $C \subset C(\Omega)$ be a min-stable cone and $P \subset C^+(\Omega)$ be an adapted cone such that $P \subset C \subset H_p$. Let be C-integrable positive measures. Then the following two conditions are equivalent;

- (i) $\lambda \ll \mu$,
- (ii) $\mu(\hat{g}) \leq \int g(x) d\lambda(x) \text{ for any } g \in H_p$.

PROOF. From proposition 2, we have

$$\int \hat{g}(x) \ d\lambda(x) = \inf \left\{ \int f(x) \ d\lambda(x) \ ; \ f \geq g, \ f \in C \right\} . \quad \dots (*)$$

Applying (*), it is clear that (i) and (ii) are equivalent.

PROPOSITION 4. Let $C \subset C(\Omega)$ be a cone and $P \subset C^+(\Omega)$ be an adapted cone such that $P \subset C \subset H_p$. Then for each $x \in \Omega$ we have

$$\hat{g}(x) = \sup_{\mathbf{e}_x \ll \mu} \int g d\mu$$

for any $g \in H_p$.

PROOF. If $\varepsilon_x \ll \mu$, for any $f \in C$ with $f \geq g$, then we have $\mu(g) \leq \mu(f) \leq f(x)$. This implies $\sup \mu(g) \leq g(x)$.

Conversely, the mapping; $\varphi \rightarrow \hat{\varphi}(x)$ from H_p into R is a sublinear function. Therefore, by the Hahn-Banach's extention theorem, there exists, for any $g \in H_p$, a linear functional L on H_p such that $L(g) = \hat{g}(x)$ and $L(\varphi) \leq \hat{\varphi}(x)$ for $\varphi \in H_p$. It is clear that L is positive. Hence there exists a positive P-integrable measure μ such that $\mu(\varphi) = L(\varphi)$ for any $\varphi_p \in H$.

For any $f \in C$, we have

$$\int f d\mu = L(f) \leq \hat{f}(x) = f(x).$$

Hence $\varepsilon_x \ll \mu$. By $\mu(g) = \hat{g}(x)$, we have $\hat{g}(x) \leq \sup_{\varepsilon_x \ll \mu} \mu(g)$.

$\S 4$. Separability of H_p .

We shall call strictly positive a real valued function f such that f(x)>0 for any $x\in\Omega$. We denote by $C_k(\Omega)$ the set of all continous functions with compact supports.

PROFOSITION 5. Let Ω be a locally compact, σ -compact set and $P \subset C^-(\Omega)$ be an adapted cone containing a strictly positive function f. Then $C_k(\Omega)$ is dense in H_p .

PROOF. First we remark $C_k(\Omega) \subset H_p$. Let U be a neighborhood of a $\varphi \in H_p$. For any $u \in P$ with $\varphi \in H_u$, $U \cap H_u$ is open in H_u . Hence there exists $\varepsilon > 0$ such that $\{h : || \varphi - h ||_u < \varepsilon \} \subset U \cap H_u$. In order to prove that $C_k(\Omega)$ is dense in H_p , we have only to find a $u \in P$ such that $H_u \supseteq \varphi$ and for any $\varepsilon > 0$ there exists a $h \in C_k(\Omega)$ such that $||f - h||_u < \varepsilon$.

There exists $v \in P$ such that $H_v \supseteq \varphi$, since $H_p \supseteq \varphi$. This implies $|\varphi| \le ||\varphi||_v v$. Since P is adapted, we can find $u \in P$ such that for any $\varepsilon > 0$ that exists a compact K satisfying

$$v \leq \varepsilon u$$
 on K^c .

We may assume u>0. Thus there exists a $\lambda>0$ such that $|\varphi|<\lambda u$ on K. Hence we have

$$|\varphi| \leq (\lambda + \varepsilon ||\varphi||_v) u$$
 on Ω .

This implies $\varphi \in H_u$. Further, there exists a $g \in C_k^+(\Omega)$ such that $|\varphi| \leq g$ on K. Put $h = \sup(-g, \inf(\varphi, g))$, then we have $h \in C_k^+(\Omega)$, $|\varphi - h| = 0$ on K, and $|\varphi - h| < \varepsilon ||\varphi||_v u$ on K^c , from which we have $||\varphi - h||_u < \varepsilon ||\varphi||_v$ and the proof is completed.

PROPOSITION 6. Let Ω be locally compact, σ -compact and metrizable. Let $P \subset C^-(\Omega)$ be a convex cone such that for any $x \in \Omega$ there exists a $f \in P$ such that f(x) > 0. Then there exists an enumerable set $D \subset C_k(\Omega)$ such that D is dense in $C_k(\Omega)$ under the topology of H_p .

PROOF. Let $\{K_n\}$ be a sequence of compact subsets of Ω satisfying $\bigcup_n K_n = \Omega$ and $K_n \subset K_{n+1}^{i}$ for any $n \in \mathbb{N}$. Since the space $C(K_n)$ is separable under the uniform norm, there exists an enumerable set $D_n \subset C_k(\Omega)$ such that for any $h \in D_n$ the support of h is contained in K_{n+1} and the set $\{h \mid K_n \; ; \; h \in D_n\}^{(**)}$ is dense in $C(K_n)$ with the uniform norm. Put

^(*) For a subset $A \subset \Omega$, we denote by A^i the interior of A.

^(**) For a subset $A \subset \Omega$ and a function h on Ω , we denote by $h \mid A$ the restriction of h on A.

$$D' = \bigcup_{n=1}^{\infty} [\{-h; h \in D_n\} \cup D_n]$$

and $D = \{\sup(\inf(h_1, h_2), \inf(h_3, h_4)) ; h_i \in D' \text{ for } i = 1, 2, 3, 4\}$. Then D is an enumerable set.

Given any $\in C_k(\Omega)$. Assume that the support of φ is contained in K_n . Then, for each $\varepsilon>0$, there exists a h_1 $\in D_{n+1}$ such that $|\varphi-h|<\varepsilon$ on K_{n+1} . We can find a function h_2 such that $h_2 \ge |\varphi|$ on K_n and the support of $h_2 \in D'$ is contained in K_{n+1} . Put $f=\sup(\inf((-h_1,-h_2),\inf(h_1,h_2)),$ then we have $f \in D$ and $|\varphi-f|<\varepsilon$ on K_{n+1} and $|\varphi-f|=0$ on K_{n+1}^c . From the assumption made in the present proposition, there exists a $v \in P$ such that v>1 on K_{n+1} . Hence we have $|\varphi-f|<\varepsilon v$ on Ω . This implies $||\varphi-f||_v<\varepsilon$.

From proposition 5 and 6, we have the following corollary.

COROLLARY. Let Ω be locally compact, σ -compact and metrizable and $P \subset C^+(\Omega)$ an adapted cone containing a strictly positive function. Then H_p is separable.

§ 5. The main Theorem. Let Ω be locally compact, σ -compact and $C \subset C(\Omega)$ a cone. We denote by \mathfrak{M}_c^+ the set of all C-integrable positive Radon measures and by \ll the balayage with respect to C. Let T be a kernel with the Borel σ -field on Ω . We shall call T C-dilation if $\varepsilon_{\omega} < \varepsilon_{\omega} T$ for any $\omega \subset \Omega$, where ε_{ω} is the point measure of ω .

In order to prove theorem 2, we need the following theorem by the author. [8]

THEOREM 1. Let $(\Omega, \mathfrak{F}, \lambda)$ be a measure space with positive, comlete and σ -finite measure. Assume that an ordered vector space E is separable under the topology of inductive limit of Banach spaces $\{E_{\alpha}\}_{\alpha \in \mathfrak{A}}$, where E_{α} is a subspace of E such that $E = \bigcup_{\alpha} E_{\alpha}$. Let p be a weakly measurable mapping from Ω into S_{E} satisfying the condition (c). Put $s(x) = \int p_{\omega}(x) d\lambda(\omega)$ for each $x \in E$, then S is also sublinear function on E.

For $x' \in L^+(E)$, the following condition (a) and (b) are equivalent;

- (a) $\langle x' x \rangle \leq S(x)$ for any $x \in E$,
- (b) there exists a weakly measurable mapping; $\omega \to x_\omega' \in E$ such that x_ω' is dominated by p_ω and

$$\langle x', x \rangle = \int \langle x_{\omega}', x \rangle d\lambda(\omega)$$

for any $x \in E$.

Here, we denote by S_E the set of all sublinear functions on E and we shall say that p is weakly measurable if the mapping; $\omega \rightarrow p_{\omega}(x)$ is λ -measurable for each $x \in E$.

Further we say that p satisfies the condition (c) when p satisfies the following condition;

for each $\alpha \in \mathfrak{A}$, there exist a non-negative, λ -integrable function $g_{\alpha} \in \mathfrak{R}^{\infty}(\Omega, \mathfrak{F}, \lambda)^{(*)}$ and a constant $M(\alpha)$ such that

$$|p_{\omega}(x)| \leq M(\alpha) ||x||_{\alpha} g_{\alpha}(\omega)$$

for any $x \in E$ and any $\omega \in \Omega$.

THEOREM 2. Let Ω be locally compact, σ -compact and metrizable and $C \subset C(\Omega)$ be a min-stable cone. Assume that an adapted cone $P \subset C^+(\Omega)$ satisfies $H_p \supset C \supset P$ and contains a strictly positive function. Then for two C-integrable positive Radon measures λ , μ on Ω , the following two conditions are equivalent:

- (a) μ is a balayage of λ with respect to C,
- (b) there exists a C-dilation T on Ω such that $\lambda T = \mu$.

PROOF. If, for each $f \in H_p$, we put $\hat{f}(\omega) = \inf_{\substack{g \geq f \\ g \in C}} g(\omega)$, then $\hat{f}(\omega) = \sup\{\langle \theta, f \rangle, \varepsilon_{\omega} \ll \theta, \theta \in \mathfrak{M}_{c}^{\perp}\}$. Since \hat{f} is upper semicontinuous and λ -integrable, we can define $p_{\lambda}(f) = \langle \lambda, \hat{f} \rangle$ for any $f \in H_p$. Thus, from proposition 3, (a) is equivalent to the following condition (a');

- (a') $\mu(f) \leq p_{\lambda}(f)$ for any $f \in H$. Now we have only to prove that (a') and (b) are equivalent.
- (b) \Rightarrow (a') From $\mu = \lambda T$, we have $\varepsilon_{\omega} \ll \varepsilon_{\omega} T$ for any $\omega \in \Omega$ and

$$\langle \mu, f \rangle = \int_{\Gamma} \langle \varepsilon_{\omega} T, f \rangle d\lambda(\omega)$$

for any $f \in H_p$. Hence

$$\langle \mu, f \rangle = \int \hat{f}(\omega) \, d\lambda(\omega) = p_{\lambda}(f) .$$

 $(a') \Rightarrow (b)$

We apply theorem 1. Take for (Ω, \mathfrak{F}) the space Ω with the σ -field of λ -measurable sets, for E the space H_p and set $p_{\omega}(f) = \hat{f}(\omega)$ for each $f \in H_p$ and each $\omega \in \Omega$. Let $\{K_n\}$ be an increasing family of compact sets such that $\Omega = \bigcup_n K_n$ and $K_n \subset K_n^i$. It is clear that for each $v \in P$, $v \in \mathfrak{R}(\Omega, \mathfrak{F}, \lambda)$ and v is λ -integrable. Since $|p_{\omega}(f)| \leq ||f||_v v(\omega)$ for any $f \in H_v$ and each $\omega \in \Omega$, all the assumptions of theorem 1 are completely satisfied. Therefore, there exists a weakly λ -measurable mapping t;

^(*) Let $\{K_i\}$ be an increasing sequence of $\mathfrak F$ such that $\lambda(K_i) < +\infty$ and $\Omega = \bigcup_{i=1}^{\infty} K_i$. We denote by $\mathfrak R^{\infty}(\Omega, \mathfrak F, \lambda)$ the set of all λ -measurable functions f such that $f \mid K_i$ are almost everywhere bounded for each $i \in \mathbb N$.

 $\omega \to t_{\omega}$ from Ω into $L^+(H_p)$, where $L^+(H_p)$ is the set of all positive continous linear forms on H_p , such that

$$\langle \mu, f \rangle = \int \langle t_{\omega}, f \rangle \, d\lambda(\omega)$$

for any $f \in H_p$ and

$$\langle t_{\omega}, f \rangle \leq p_{\omega}(f)$$

for any $\omega \in \Omega$ and any $f \in H_p$.

Since any positive linear form on H_p for an adapted cone is represented by a positive P-integrable Radon measure, we may regard t_{ω} as a positive P-integrable measure on Ω .

Let $\{f_n\}$ be a dense sequence in H_p . Then there exists a Borel set A such that $\lambda(A)=0$ and for any $n\in \mathbb{N}$ the λ -measurable function; $\omega \to \langle t_{\omega}, f_n \rangle$ is equal to a Borel function on A^c . Let

then for any $n{\in}N$ the function ; $\omega{\to}\langle T_{\omega},f_{n}\rangle$ is a Borel function and for any $f{\in}H_{p}$

$$\langle T_{\omega}, f \rangle \leq p_{\omega}(f)$$
.

Consequently,

$$\langle \mu, f_n \rangle = \int \langle T_\omega, f_n \rangle \, d\lambda(w)$$

for any $n \in N$ and we have

$$\langle \mu, f \rangle = \int \langle T_{\omega}, f \rangle d\lambda(\omega)$$
(1)

for any $f \in H_p$, since $\{f_n\}$ is dense in H_p .

Let B be an open set on Ω such that \overline{B} is compact. Then there exists a sequence $\{\varphi_n\}\subset C_k(\Omega)\subset H_p$ such that $0\leq \varphi_n\leq 1$ and $\varphi_n\uparrow\chi_B$ for any $n\in \mathbb{N}$, since Ω is metrizable. Therefore, for any Borel set B, the function; $\omega\to\langle T_\omega,\chi_B\rangle$ is a Borel function. Thus the mapping $T:\omega\to T_\omega$ is a kernel on the Borel σ -field on Ω and a C-dilation from $\varepsilon_\omega\ll T_\omega$ for any $\omega\in\Omega$. From (1) we have $\lambda T=\mu$.

References

- [1] P. Cartier, J.M.G. Fell and P.A. Meyer: Comparaison des mesures portées par un ensemble convex compact. Bull. Soc. M. France, 92 (1964), 435-445.
- [2] G. Choquet: Le problème des moments. Sémi. Choquet, 1 (1962).
- [3] G. Choquet: Lectures on Analysis, Vol. 2. (Benjamin, 1969).
- [4] A.I. Tulcea & C.I. Tulcea: Topics in the theory of liftings. (Springer, 1969).
- [5] P.A. Meyer: Probability and potentials. (Blaisdell, 1966).

- [6] G. Mokobodzki & D. Sibony: Cônes adaptés de fonctions continues et théorie du potentiel. Sémi. Choquet, 6 (1966/67).
- [7] V. Strassen: The existence of probability measures with given marginals. Am. M. Stat, 36 (1965), 423-439.
- [8] H. Watanabe: Liftings and a generalized Strassen's theorem. Natu. Sci. Rep. Ochanomizu Univ. To appear.