Liftings and A Generalized Strassen's Theorem

Hisako Watanabe

Department of Mathematics, Faculty of Science, Ochanomizu University, Tokyo (Received Sep. 10, 1971) (Revised Nov. 1, 1971)

§ 1. Preliminaries.

Let $(\Omega, \mathfrak{F}, \lambda)$ be a measure space with positive, complete and σ -finite measure λ . Let $M^{\infty} = M^{\infty}(\Omega, \mathfrak{F}, \lambda)$ be the set of all bounded \mathfrak{F} -measurable functions. The existence of lifting of M^{∞} , proved by D. Maharam [4] and subsequently by A.I. Tulcea and C.I. Tulcea [3], has important applications.

Let $\{K_i\}$ be an increasing sequence of \mathfrak{F} such that $\lambda(K_i) < +\infty$ and $\Omega = \bigcup_{i=1}^{\infty} K_i$. We denote by $\Re^{\infty}(\Omega, \mathfrak{F}, \lambda)$ the set of all λ -measurable functions f such that $f|K_i^{(1)}$ are almost everywhere bounded for each $i \in \mathbb{N}$.

We shall prove the existence of a lifting of $\Re^{\infty}(\Omega, \mathfrak{F}, \lambda)$ by which we shall further extend a theorem of Strassen on an integral representation of a continuous linear functional dominated by a support function in integral form.

§ 2. Liftings.

Let (Ω, \mathfrak{F}) be a measure space and λ be a positive, σ -finite and complete measure on (Ω, \mathfrak{F}) . We shall fix an increasing sequence $\{K_i\}$ of elements of \mathfrak{F} such that $\bigcup_{i=1}^{\infty} K_i = \Omega$, $\lambda(K_i) < +\infty$ and $\lambda(K_i) < \lambda(K_{i+1})$. If, for two \mathfrak{F} -measurable functions f and g, holds f = g a.e., then we shall write $f \sim g$. We shall also denote by $\mathfrak{R}^{\infty}(\Omega, \mathfrak{F}, \lambda)$ or simply $\mathfrak{R}^{\infty}(\mathfrak{F})$ the set of all \mathfrak{F} -measurable functions f such that $f \mid K_i$ are a.e. bounded for each $i \in \mathbb{N}$.

We say that $\mathfrak{K}^{\infty}(\mathfrak{F})$ has a lifting ρ if there exists a mapping ρ from the space $\mathfrak{K}^{\infty}(\mathfrak{F})$ into $\mathfrak{K}^{\infty}(\mathfrak{F})$ having the following properties;

- (a) ρ is linear,
- (b) $f \ge 0$ a.e., $f \in \Re^{\infty}(\Re) \Rightarrow \rho(f)(\omega) \ge 0$ for each $\omega \in \Omega$,
- (c) $\rho(a) = a$ for every constant a,

¹⁾ For a subset $A \subset \mathcal{Q}$ and a function f on \mathcal{Q} , we denote by $f \mid A$ the restriction of f on A.

²⁾ We denote by N the set of all natural numbers.

- (d) $f \in \Re^{\infty}(\mathfrak{F}), i \in \mathbb{N} \Rightarrow \rho(f)(\omega) \leq ||\rho(f)| K_i||_{\infty} \text{ for every } \omega \in K_i,$
- (e) $f \in \Re^{\infty}(\mathfrak{F}) \Rightarrow \rho(f) \sim f$,
- (f) $f, g \in \Re^{\infty}(\Re) \Rightarrow \rho(fg) = \rho(f)\rho(g).$

Theorem 1. $\Re^{\infty}(\mathfrak{F})$ has a lifting ρ .

PROOF. $H_1=K_1$ and $H_i=K_i-K_{i-1}$ $(i\geq 2)$. Then we have $\Omega=\bigcup_{i=1}^{\infty}H_i$ with $H_i=\mathfrak{F}$, $\lambda(H_i)<+\infty$ and $(H_i\cap H_j)=\phi$ if $i\neq j$. $M^{\infty}(H_i,\mathfrak{F},\lambda)$ has a lifting ρ_i by Tulcea [2]. We define for $f=\mathfrak{K}^{\infty}(\mathfrak{F})$ as follows;

$$\rho(f)(\omega) = \rho_i(g)(\omega)$$
 for $\omega \in H_i$.

Here g is a function of $M^{\infty}(H_i, \mathfrak{F}, \lambda)$ such that $g \sim f|H_i$. Then ρ is well-defined and ρ has properties (a) \sim (f). Therefore ρ is a lifting of $\mathfrak{K}^{\infty}(\mathfrak{F})$.

§ 3. Integral representation.

Let E be a vector space. Suppose that $\{E_{\alpha}\}_{\alpha\in\mathfrak{A}}$ is a family of subspace of E with $E=\bigcup_{\alpha\in\mathfrak{A}}E_{\alpha}$, where \mathfrak{A} is directed set with order \prec . Further, assume that for each $\alpha\in\mathfrak{A}$, E_{α} is a Banach space with norm $||\cdot||_{\alpha}$ and $E_{\alpha}\subset E_{\beta}$ if $\alpha\prec\beta$. Let us assign to E the topology of inductive limit of $\{E_{\alpha}\}_{\alpha\in\mathfrak{A}}$.

Let (Ω, \mathfrak{F}) be a measure space with a positive, complete and σ -finite measure λ . We shall fix an increasing $\{K_i\}$ such that $K_i \in \mathfrak{F}$, $\Omega = \bigcup_{i=1}^{\infty} K_i$ and $\lambda(K_i) < +\infty$. Assume that there exists a mapping from \mathfrak{A} into $\mathfrak{R}^{\times}(\Omega, \mathfrak{F}, \lambda)$ such that for each $\alpha \in \mathfrak{A}$, the corresponding g_{α} is non-negative and λ -integrable.

Let D be the set of all functions φ such that $\varphi \in L^1(\Omega, \mathfrak{F}, \lambda)$ of each of which support is contained in some K_i . We denote by B the vector space generated by D and all constant functions on Ω . Let us notice that for any $\varphi \in B$ we can write $\varphi = \varphi_1 + \varphi_2$ where $\varphi_1 \in D$ and φ_2 is constant. For each $\varphi \in B$ and each $x \in E$, we denote by φx the function; $\varphi \to \varphi(\omega)x$ with values in E. Put

$$Q_{\alpha} = \{ \varphi_1 x_1 + \dots + \varphi_n x_n \; ; \; \varphi_i \subseteq B, \; x_i \subseteq E_{\alpha}, \; n \subseteq N \}$$

and $Q = \bigcup_{\alpha} Q_{\alpha}$. If for each $f = \sum_{i=1}^{n} \varphi_{i} x_{i} \in Q_{\alpha}$, we put

$$||f||_{\alpha} = \int ||\varphi_1(\omega)x_1 + \cdots + \varphi_n(\omega)x_n||_{\alpha} g_{\alpha}(\omega) d\lambda(\omega),$$

then we have

$$\begin{split} ||f||_{\alpha} & \leq \sum_{i=1}^{n} \int |\varphi_{j}(\omega)| ||x_{i}||_{\alpha} g_{\alpha}(\omega) d\lambda(\omega) \\ & = \sum_{i=1}^{n} ||x_{i}||_{\alpha} \int |\varphi_{i}(\omega)| g_{\alpha}(\omega) d\lambda(\omega) < +\infty . \end{split}$$

We shall denote by E' the set of all continous linear forms on E.

Theorem 2. Assume that a linear form G on the vector space Q satisfies the following condition;

for each $\alpha \in \mathfrak{A}$ there exists a constant $M(\alpha)$ such that

$$|G(\varphi x)| \leq M(\alpha) ||\varphi x||_{\alpha}$$

for any $x \in E_{\alpha}$ and any $\varphi \in B$.

Then there exists a mapping ξ from Ω into E' such that

$$G(F) = \int \langle \xi(\omega), F(\omega) \rangle d\lambda(\omega)$$

for any $F \in Q$, the mapping $\omega \rightarrow \langle \xi(\omega), x \rangle$ is λ -measurable for any $x \in E$, for each $\alpha \in \mathfrak{A}$, for each $i \in \mathbb{N}$ and each $\omega \in K$, we have

$$|\langle \xi(\omega), x \rangle| \leq M(\alpha) ||x||_{\alpha} ||g_{\alpha}|K_{i}||_{\infty}.$$

PROOF. Let D_i the set of all $\varphi \subset D$ of which supports are contained in K_i . From the assumption we have

$$|G(\varphi x)| \leq M(\alpha) ||x||_{\alpha} \int |\varphi(\omega)| g_{\alpha}(\omega) d\lambda(\omega)$$

$$\leq M(\alpha) ||x||_{\alpha} ||g_{\alpha}|K_{j}||_{\infty} \int |\varphi(\omega)| d\lambda(\omega)$$

for any $x \in E_{\alpha}$ and $\varphi \in D_{j}$. Since the linear form $\varphi \to G(\varphi x)$ on $L^{1}(K_{j}, \mathfrak{F}, \lambda)$ is bounded, there exists a $h_{x}(\alpha, j) \in L^{\infty}(K_{j}, \mathfrak{F}, \lambda)$ such that

$$G(\varphi x) = \int h_x(\alpha, j)(\omega) \varphi(\omega) d\lambda(\omega),$$

$$||h_x(\alpha, j)||_{\infty} \leq M(\alpha) ||x||_{\alpha} ||g_{\alpha}|K_j||_{\infty}$$

for any $\varphi \in D_j$ and any $j \in \mathbb{N}$. If $K_i \subset K_j$, we have $h_x(\alpha, i) = h_x(\alpha, j)$ a.e. on K_i . Therefore, we can define $h_x^{\alpha}(\omega) = h_x(\alpha, j)(\omega)$ for $\omega \in K_j$. The function h_x^{α} defined a.e. on Ω is λ -measurable and $h_x^{\alpha} \mid K_j$ is a.e. bounded. Hence $h_x^{\alpha} \in \Re^{\infty}(\Omega, \mathfrak{F}, \lambda)$. Assume that $x \in E_{\alpha}$. Put $\varphi_n = \chi_{k_n}$. Then we have $\varphi_n \to 1$. From $\varphi_n = 1 \in B$, we have

$$|G(x) - G(\varphi_n x)| = |G((1 - \varphi_n)x)|$$

$$\leq M(\alpha) \int ||x||_{\alpha} (1 - \varphi_n(\omega)) \ g_{\alpha}(\omega) \ d\lambda(\omega) \to 0 \quad (n \to \infty) \ .$$

Hence,

$$G(x) = \lim_{n \to \infty} G(\varphi_n x)$$
. (1)

Since for any $f \in L^{\infty}(\Omega, \mathfrak{F}, \lambda)$, $f\varphi_n$ is contained in D, we have

$$|G(f\varphi_n x)| \leq M(\alpha) ||f\varphi_n x||_{\alpha}$$

from the assumption. This implies

$$\int h_x^{\alpha}(\omega) f(\omega) \varphi_n(\omega) d\lambda(\omega) \leq ||x||_{\alpha} M(\alpha) ||f||_{\alpha} \int g_{\alpha}(\omega) d\lambda(\omega).$$

Therefore, we have

$$h_x^{\alpha} \varphi_n \leq ||x||_{\alpha} M(\alpha) g_{\alpha}$$
, a.e.

Since g_{α} is λ -integrable, $h_{x}^{\alpha}\!=\!\lim_{n}h_{x}^{\alpha}\varphi_{n}$ is also λ -integrable, and holds

$$\lim_{n\to\infty} \int h_x^{\alpha}(\omega) \, \varphi_n(\omega) \, d\lambda(\omega) = \int h_x^{\alpha}(\omega) \, d\lambda(\omega) \, \dots (2)$$

By (1) and (2), we have for any $x \in E$

$$G(x) = \int h_x^{\alpha}(\omega) \ d\lambda(\omega) ,$$

whence

$$G(\varphi x) = \int h_x^{\alpha}(\omega) \ \varphi(\omega) \ d\lambda(\omega)$$

for any $x \in E_{\alpha}$ and any $\varphi \in B$.

For any $x \in E_{\alpha}$, h_x^{α} has the following properties;

- (i) $||h_x^{\alpha}|K_i||_{\infty} \leq M(\alpha) ||x||_{\alpha} ||g_{\alpha}|K_i||_{\infty}$ for any $x \in E_{\alpha}$,
- (ii) $h_{x+y}^{\alpha}(\omega) = h_x^{\alpha}(\omega) + h_x^{\alpha}(\omega)$ a.e.,
- (iii) $h_{tx}^{\alpha}(\omega) = th_{x}^{\alpha}(\omega)$ for real t.
- iv) $E_{\alpha} \cap E_{\beta} \neq \phi \Rightarrow$ for any $x \in E_{\alpha} \cap E_{\beta}$, $h_{x}^{\alpha} = h_{x}^{\beta}$ a.e.

In particular we have $h_x^{\alpha} \in \Re^{\infty}(\Omega, \mathfrak{F}, \lambda)$ for $x \in E_{\alpha}$. From theorem 1 in § 2, there exists a lifting ρ of $\Re^{\infty}(\Omega, \mathfrak{F}, \lambda)$. Put $\xi(\omega)(x) = \rho(h_x^{\alpha})(\omega)$ for any $x \in E_{\alpha}$ and any $\omega \in \Omega$. Then $\xi(\omega)$ is well-defined and $\xi(\omega) \in E'$ for each $\omega \in \Omega$, and the function; $\omega \to \xi(\omega)(x)$ is, for each $x \in E$, λ -measurable. Further we have

$$G(\varphi x) = \int \xi(\omega)(x) \ \varphi(\omega) \ d\lambda(\omega) = \int \langle \xi(\omega), \ \varphi(\omega)x \rangle \ d\lambda(\omega)$$

for any $\varphi \in B$ and $x \in E$. Therefore we have the conclusion.

Samely, we can prove the following theorem.

THEOREM 3. Let E be an ordered vector space. Assume that, under the same notations in theorem 2, a linear form G on the vector space Q satisfies the following conditions;

(i) for each $\alpha \in \mathfrak{A}$ there exists a constant $M(\alpha)$ such that

$$G(\varphi x) \leq M(\alpha) ||\varphi x||_{\alpha}$$

for any $x \in E_{\alpha}$ and any $\varphi \in B$,

(ii) $G(\varphi x) \geq 0$ for any $x \geq 0$ and for any $\varphi \geq 0$. Then there exists a mapping ξ from Ω into $(E')^+$ such that

$$G(F) = \int \langle \xi(\omega), F(\omega) \rangle d\lambda(\omega)$$

for any $F \in Q$.

In theorem 3 $(E')^+$ is the set of all positive continous linear forms on E.

§ 4. A generalized Strassen's theorem.

Let S_E be the set of all sublinear functions on E and p be a mapping; $\omega \rightarrow p_{\omega}$ from Ω into S_E . We shall say that p is weakly measurable if the mapping; $\omega \rightarrow p_{\omega}(x)$ is λ -measurable for each $x \in E$.

We shall also say that p satisfies the condition (c) when p satisfies the following conditions;

For each $\alpha \in \mathfrak{A}$, there exist a non-negative and λ -integrable function $g_{\alpha} \in \mathfrak{R}^{\infty}(\Omega, \mathfrak{F}, \lambda)$, and a constant $M(\alpha) > 0$ such that

$$|p_{\omega}(x)| \leq M(\alpha) ||x||_{\alpha} g_{\alpha}(\omega)$$

for any $x \in E_{\alpha}$ and any $\omega \in \Omega$.

THEOREM 4. Let $(\Omega, \mathfrak{F}, \lambda)$ be a measure space with positive, complete and σ -finite measure. Assume that a vector space E is separable under the topology of inductive limit of Banach spaces $\{E_{\alpha}\}_{\alpha \in \mathfrak{A}}$. Let p be a weakly measurable mapping from Ω into S_E satisfying the condition (c). Put

$$s(x) = \int p_{\omega}(x) \ d\lambda(\omega)$$

for each $x \in E$, then s is also sublinear function on E.

For $x' \subseteq E'$ the following (a) and (b) are equivalent;

- (a) $\langle x', x \rangle \leq s(x)$ for any $x \in E$,
- (b) there exists a weakly measurable mapping; $\omega \to x_\omega' \in E'$ such that x_ω' is dominated by p_ω and

$$\langle x', x \rangle = \int \langle x_{\omega}', x \rangle d\lambda(\omega)$$

for any $x \in E$.

PROOF. It is clear that s is well-defined and sublinear since p satisfies the condition (c). It is also clear that (b) implies (a). Conversely we shall prove that (a) implies (b). We consider the space Q of theorem 3. For any function $F = \sum_{i=1}^{n} \varphi_i x_i$ of Q where $x \in E_{\alpha}$, $0 \le \varphi_i \in B$, the function; $\omega \to p_{\omega}(\sum_{i=1}^{n} \varphi_i(\omega)x_i)$ is λ -measurable and we have

$$p_{\omega}(\sum_{i=1}^{n}\varphi_{i}(\omega)x_{i}) \leq \sum_{i=1}^{n}\varphi_{i}(\omega) p_{\omega}(x_{i}) \leq \sum_{i=1}^{n}\varphi_{i}(\omega) ||x||_{\alpha} g_{\alpha}(\omega) M(\alpha).$$

Hence $\left|\int p_{\omega}(\sum_{i=1}^{n}\varphi_{i}(\omega)\;x_{i})\;d\lambda(\omega)\right|<+\infty$. Put $S(F)=\int p_{\omega}(F(\omega))\;d\lambda(\omega)$ for any $F\subset Q$. Then S is a sublinear function on Q. Since $B\supseteq 1$, we may identity E a subspace of Q. By the Hahn-Banach's extention theorem, $x'\subset E'$ dominated by S on E can be extended to a linear form ξ' dominated by S on Q. For any $x\subset E_{\alpha}$ and $\varphi\subset B$, we have

$$\begin{split} \langle \xi', \, \varphi x \rangle & \leq S(\varphi x) = \int p_{\omega}(\varphi(\omega) \, x) \, d\lambda(\omega) \\ \\ & \leq M(\alpha) \int |\varphi(\omega)| \, ||x||_{\alpha} \, g_{\alpha}(\omega) \, d\lambda(\omega) = M(\alpha) \, ||\varphi x||_{\alpha} \, . \end{split}$$

Hence, applying theorem 2, there exists a weakly measurable mapping; $\omega \rightarrow x_{\omega}'$ from Ω into E' such that

$$\langle \xi', F \rangle = \int \langle x_{\omega}', F(\omega) \rangle d\lambda(\omega)$$

and

$$\int \langle x_{\omega}', F(\omega) \rangle \ d\lambda(\omega) \leq \int p_{\omega}(F(\omega)) \ d\lambda(\omega)$$

for any $F \in Q$. In particular for any $x \in E$, we have

$$\langle x', x \rangle = \langle \xi', x \rangle = \int \langle x_{\omega}', x \rangle d\lambda(\omega)$$
.

Since for any $x \in E$ and any λ -measurable set A contained in K_i , $\chi_A \in B$, and $\chi_A x \in Q$, we have $\langle \xi', \chi_A x \rangle \leq S(\chi_A x)$, whence

$$\int_{A} \langle x_{\omega}', x \rangle \, d\lambda(\omega) \leq \int_{A} p_{\omega}(x) \, d\lambda(\omega) .$$

Consequently, we have $\langle x_{\omega}', x \rangle \leq p_{\omega}(x)$ a.e. on K_j , whence $\langle x_{\omega}', x \rangle \leq p_{\omega}(x)$ a.e. on Ω .

Since E is separable, there exists a sequence $\{x_n\}$ dense in E. For any $n \in \mathbb{N}$, we have $\langle x_{\omega}', x_n \rangle \leq p_{\omega}(x_n)$ a.e. on Ω . Since p_{ω} and x_{ω}' are bounded on E_{α} for each $\alpha \in \mathfrak{A}$, they are continuous in E. Therefore, there exists a negligible set A such that $\langle x_{\omega}', x \rangle \leq p_{\omega}(x)$ for any $x \in E$ and any $\omega \in A^c$. If we define $y_{\omega}' = x_{\omega}'$ if $\omega \in A^c$ and $y_{\omega}' = z_{\omega}'$ if $\omega \in A$ where for $\omega \in A$, z_{ω}' is any element of E' dominated by p_{ω} , then $y_{\omega}' \in E'$.

Thus $\langle y_{\omega}', x \rangle \leq p_{\omega}(x)$ for any $x \in E$ and the mapping $\omega \rightarrow y_{\omega}'$ is weakly measurable and holds

$$\langle x', x \rangle = \int \langle y_{\omega}', x \rangle d\lambda(\omega)$$

for any $x \in E$. Hence the theorem is proved.

Samely we can prove the following theorem by applying theorem 3.

THEOREM 5. Let E be an ordered vector space. Assume that $(\Omega, \mathfrak{F}, \lambda)$, E and p satisfy the same conditions in theorem 4. Then, for $x' \in (E')^+$ the following (a) and (b) are equivalent;

- (a) $\langle x', x \rangle \leq s(x)$ for any $x \in E$,
- (b) there exists a weakly measurable mapping; $\omega \to x_\omega' \in (E')^+$ such that x_ω' is dominated by p_ω and

$$\langle x', x \rangle = \int \langle x_{\omega}', x \rangle d\lambda(\omega)$$

for any $x \in E$.

References

- [1] J.L. Doob: Stochastic Process. (New York, Wiley, 1953).
- [2] A.I. Tulcea & C.I. Tulcea: Topics in the Theory of Liftings. (Springer, 1969).
- [3] A.I. Tulcea & C.I. Tulcea: On the Lifting Property 1, J. Math. Anal. Appl., 3 (1961), 537-546.
- [4] D. Maharam: On a Theorem of Von Neumann. Proc. Am. Math. Soc., 9 (1958), 987-994.
- [5] P.A. Meyer: Probability and Potentials. (Blaisdell, 1966).
- [6] V. Strassen: The Existence of Probability measures with Given Marginals. Ann. M. Stat., 36 (1965), 423-439.