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As a sequel to the foregoing paper,” types of the Schroedinger
equation soluble in terms of hypergeometric functions are determined,
with accompanying potentials and eigenvalues.

§}'1.‘ The Hype'rgeometr'ic equations

Our aim in this paper is to determine types of Schroedinger
equation

¢ (@) + (E— V(x))p(2)=0 - )
that can be reduced to the hypergeometric equation
t(1—tyw' () + {c — (a+b-+ D) tw'(t) — abw(t) =0 (2)

through the change of variables '
wt)=s(@)p(x) and t=t(x) (3)

under the condition that the potential V(x) depends on only the variable
# while the eigenvalue E depends on only a parameter a, or, in other
words, the term ¢/ (x)/¢(x) splits into the sum of a function of # and a
function of the parameter a, b and ¢ being either dependent on a or
numerical constants. Substitution of (8) in (2) leads to

&' +[2i_t_”+ c—(a+b+1)t t,:l &'
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Combparison of (4) with (1) leads to the vanishing of ‘the coefficient of
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hence, to the following expression of s in terms of ¢
s=const. (1 —t)e ooz /i (5)

where the abbreviations ¢ =dt/dx, s’=ds/dx, ¢'=d¢p[dz, etc. are tacitly
understood.
Elimination of s from (4) by means of (5) gives

v=—go= () = (%) s

s t(1—t)

N t// l— tll 2 tl2

_< 2t/ ) (2# ) * At3(1—t)?
{{1—(a—b)*}t*+2[c(a—+b—1)— 2ab]t+2¢—c? . (6)

§ 2. The determination of U

For the present U may be regarded as the sum of four terms, the
first term being a function of #, each of three other terms being a
product of a function of « and a function of a. In short U may be
represented as

U=T(x)+ A(a)X(x) + B(a) Y(x) + C(a)Z(x) . (7)

The condition set forth in § 1 that U splits into the sum 6f a func-
tion of z and a function of @ requires that

AN@) X' (%) -+ B'(@) Y (%)~ C'(a)Z' (%) =0 (8)

for any values of @ and «.
Three cases may be distinguished.
Case 1. X'(x), Y/(x) and Z'(x) are linearly independent. It follows
then that
Al(a)=B'(a)=C"(a)=0,

hence that parameters are numerical constants. This case must be
excluded.

Case 2. Only one of X/, Y/ and Z’ is independent, for example, X’.
It follows then that

Y'=pX', Z'=0X', p, 0 being numerical constants.

The above assumption gives two independent differential equations
to be satisfied by a single function ¢(x), so that the function #(x) is
reduced to & numerical constant. This case must be excluded also.

Case 3. Two of X/, Y’ and Z/, for example, Y’ and Z’, are linearly
independent. This case leads to a relation between X’, Y’ and Z/, for
example, ‘

X'4+pY'402'=0. (9)
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Elimination of X’ from (8) by means of (9) leads to the relation
| L (B'—pA) Y+ (C'—cANZ' =0 .
Since Y’ and Z are assumed to be linearly independent, it follows

that

B'=pA" or B=pA+p,
(10)
C'=¢A" or C=0A+o,

p,, 0, being numerical constants.
This gives
U=T+AX+pY+0Z)+p,Y+0,7Z.

Hence X+ pY +0¢Z must be a numerical constant, otherwise A will be a
constant. Return to the original expression (6) of U leads to

Tﬁ%t? (t?+ pt+ o) =constant
=k (11)
and changes relations (10) into the following two relations .
2[ec(a+b—1)—2abl=p[1— (a—Db)*]+p, (12)
2¢c—c*=0o[1—(a—b)]+a, (13)
which may be rewritten as
(A+p+o)a—b)—(a+b—c) =p+po,+0o+o,=pu (14)
o(a—b)—(c—1Y =0g+0,—1=2 (15)
The U takes finally the following form | -
U=E—V(x)
E=—k(a—Db)?
Vi) = kt*(1—t)? 1 + 2

Protto | 21—t  +ot+o
pt+o L E(1—1)" pt+o (16)

Lo 12t 24p 5 (2t+p)
t(1—t) +pt+o 4 (B+pt+o)

P (A=t 21
t’+ot+o

The potential V(x) must be a real function of %, so that all constants ¥,

o, 0, p,, 0, A, p must be real. The eigenvalue £ must be real, so (a—b)*
must be also real.

The wave function ¢(x) takes the following form

P(&) = HE DAL= )@V gt ) a0 (D) an
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§3. Potentials

The correspondence between ¢ and x is to be determmed from the
equation (11), so that the constant & must be chosen so'as to make #/?
positive for a relevant interval of ¢.

When the polynomial - pt-+o is positive for — co <<t<<co, the
constant & must be chosen positive. Then, any of three intervals of ¢,
— oo <E<C0, 0<Tt<1, 1<t< co, corresponds to the whole range of =z,

If the equatlon to determine t(x) is set as

\ ; : B
(¢ +,Ot+0')1 Zt, ——IC,>0, ‘ =k (18)
24(1—1) B | |
in the three intervals of t, the integration of (18) gives in the neigh-
bourhoods of =0, {=1 and t=co

2kx=,/0 - log t+ const,

2ex=—,/7 - log(1—t)+const,
and | | o
2kx=—log(t—1)+ const, -
or ,
t=congt . e¥*/Ve

1—t=const - g2zl
) 1/(15— 1) — const -

Where r=1-1p0+o0.

Since the potential V() is a rational function of ¢(z), it is of short
range force, excluding a Coulomb potential. This is an important pro-
perty of the potentials derived in this paper.

When the polynomial t*--pt+ ¢ has two real zeros a and B, the
correspondence between ¢ and x is a little complicated in the interval
where the polynomial vanishes. The interval of ¢ limited by a zero and
one of 0,.1 and o can be made to correspond to a half interval of «,
0<®w<<oo Or — oo <<#<0. Each of other intervals of t corresponds to
the whole interval of x as before. '

In the neighbourhood of t=a, the integration of (18) yields

IB_a 3/2 \
rx~ Lt = (a—1)". 19
K Sl a) (a—t) (19)
The dominant term of the V(x) as expressed in (16) in the neigh-
bourhood of t=a
ARt 5 (2t+p)’

P+ot+o 4 (4 pt+o0)?

turns out to be
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5 1
36 x*-

by virtue of the relation (19). In other Words, the potentlal of this
paper can have two poles of second order at most.

§ 4. Wave.‘ functi@hs_n |

As is well known, the hypergeometric equation has two indepen-
dent solutions in the nelghbourhood of each of three smgular points
t=0,1 and oo havmg leading’ terms : :

1 and ¢ Cat t-—¥0‘
1 and (I—t)e e at t=1
t* gagnd t° at t=o0

Therefore the wave functlon ¢(x) expressed as by (17) has two
lead_mg terms

tf° ~1/2 and oo ~at t=0
(1— t)(a+b -z gnd (1—t)eed2 gt t=1
t(“_b)/z and Vt'(b:——a.)/z at t=co

The physical requirement that the wave function remains finite in
the relevant interval of # entails. that the real part of at least one ex-
ponent at both limits of the correspondmg ‘interval of ¢t must be zero or
negative. Among the exponents there are two. relations expressed as
(14) and (15). Further, it must be remembered that any solution at-
one of the singularities can be expressed as a linear combination of
two independent solutions at any of other sinéularities. These things
combine to determine three constants a, b and c.

- For example, the wave function at =0 may be expressed as

sb—t(‘"”’z(l—t)‘“* . °”2(t2+pt+a)"4{Aw1(t)+sz(t)}
l(t)—F(a b;c; t) . . (20)
wy(t)=t"Fla—¢+1,b—c+1;2—c; t). '

where F(a, b; c; t) denotes the hypergeometric function, A and B being
arbitrary constants.

When ¢>>0, >0 and 4a—p ~ 0, the interval of t, O<t<1 may
correspond to the interval of %, — co < <Tco. : :

Since the exponents are related through the equations (14) and
(15), and sinee (a—b)* must be real, the exponents must be real or
purely imaginary. -Since r and ¢ are assumed to be positive, c—1 is
real for (a—b)’>2/c and purely imaginary for (a—b)*<<2/s, while
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a-+b—c is real for (a—b)’> pfr and purely imaginary for (a—b)* << p/z.

For (a—b)*<<Min (g/z, /o), both ¢—1 and a+b—c¢ are purely imagi-
nary, so that the finiteness of the wave function is automatically satis-
fied, (a—0b)* constituting continuous spectra, except for special cases
c—1=0o0r at+b—c=0.

For (a—b)>>Max (y/z, 2/o), both ¢—1 and a+b—c are real, so that
only one solution is allowable at ¢=0 and t=1. Therefore one allowable
solution at t=0 must be a constant multiple of one allowable solution
at t=1. This imposes a condition on three constants a, b and ¢.

For example, when ¢—1>0 and a-+b—c¢>0, it follows that A=0,
B=0. A formula concerning the hypergeometric function,

T(e)'(c—a—b) : — Sl
T(o—a)l(c—b) F(a,b; a+b—c+1; 1—t)

| I'(a+b—c)(c) 4
T Twre "

Fla,b;c;t)=

)c—a—bF(c.__a, c—b ; c—a—b+1 ’ 1—t) s (21)

makes obvious that the second term of the right member must be
removed for the finiteness of the wave function, thus entailing that

1

=0 22
F@I) #2)
Other relevant conditions to determine a, b and care
c—1=~a@=bfF =2 >0 (23)
at+b—c=a"7(a—b)—p >0. ' (24)
Hence
1—20=—p—~0p*—2 —A/Tp*—pt

1—2b=p—~/0p*—2 — 0" — 1t (25)
p:a~b.'

The equation (22) is satisfied by a=0, —1, —2,... and b=0, —1, —2, ... .
These values of a or b may happen to give real values of p. However
the assumption ¢>0, z>0 and 40—p*>0 involves that \/o+./z>1.
Hence the equations (25) cannot be satisfied by infinitely many values
of a or b. Consequently (a—b)® constitutes a finite number of discrete
levels. This tallies with the property mentioned earlier that the poten-
tial in this paper is of short range force. It is to be added that p
satisfies an equation of fourth degree for given a or b.

For Min (¢, 2/e) <<(a—b)*<<Min (g/z, 2[s), one of ¢c—1 and a+b—c
is purely imaginary, ensuring the finiteness of the wave function at
one of the singularities =0 and {=1. Consequently (a—b)* constitutes
continuous spectra. ' o

—
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§ 5. A special case oc=7t=0
A special case 6 =7=0 gives the potential®

Vzk{ A+, + e+,
t 1—¢

k{ 1/4—“(0‘“1)2 + 1/4_(a’+b’“c)2 (26)
t 1—t¢

while the function #(x) is to be determined by

tl2

Ty " 1)

In the interval of ¢, 0 <<t<<1 the constant ¥ may be replaced by «2

Equation (27) leads then to t=sin® kx and

V=gl s =1 m(atb—o) } 28)
sin? % cos? '

Only when both ¢—1 and a-+b—c are real, there may appear finite
levels.

In the interval of t, 1 <<t< o, replacement of k¥ by —«* in (27)
leads to t=Cos® kx and

1 2 1 2
V=gl — [i—(c—1) [i—(a-+b—c) . 29
g Cos? k2 + Sin? kx (29)

Only when both a-+-b—c and a—b are real, there may appear finite
levels.

In the interval of ¢, — oo <<t<<0, replacement of k& by —«*in (27)
leads to t= —Sin? xx and

— g2 1/4_(6—1)2 1/4_(‘7”'—17_0)2 30
g Sin? kx * Cos? kx ) (30)

Only when both ¢—1 and a—b are real, there may appear finite
discrete levels.
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