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Introduction

Frolicher-Nijenhuis have shown in [1] some interesting results about
the derivations of scalar valued or vector valued differential forms on
a differentiable manifold. They defined an operator 7\ and seeked after
some identities between several derivations. On the other hand, Yano-
Ako [4] got many differential concomitants on a manifold, and especi-
ally a concomitant S for a pure tensor on an almost complex space. A
covariant almost analytic tensor » is defined by Su=0 when % is pure.
For a skew-symmetric covariant tensor which is not necessarily sup-
posed to be pure, the operator T corresponding to S can be written in
terms of the derivations of Frolicher-Nijenhuis. Then it is naturally
considered that a p-form w satisfying Tw=0 has the properties which
are closely related to that of covariant almost analytic tensors. We call
such forms to be covariant pseudo analytic.

We firstly define some operators on an almost Kahlerian space and
search for identities between them in §1 and § 2. The formulas mainly
related to the Laplacian operator are got in §3. We shall give the
conditions of integrability of an almost K&ahlerian structure and it is
shown that there exist adjoint relations of operators in a compact case.
The last §4 is devoted to studying the pseudo analytic forms in
compact Kéahlerian spaces.

§ 1. Definitions and notations

Let M™ be an almost Hermitian space with the positive definite
Riemannian metric g,,” and the almost complex structure ¢,#. p, means
the operator of covariant derivation with respect to the Riemannian
connection. A differential p-form wu is expressed by its coefficients
a1, which are.the components of skew-symmetric covariant tensors of
degree p. Then u is written as

u=-;—'uh“ 2 BN e A de

1) The indices 2, g, --- run over the range 1,2, ..., n.
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where (2?) is a local coordinates system. We denote by {* the set of
all p-forms on M". The exterior differential d is an operator Fr—F*+,

and the dual mapping *: FP—F*? with respect to the Riemannian
structure is defined by

T,

(11) (*’l,b)h..]n_p: D ‘

K101, .o (#D%D
9 g u’#l"'ﬂpeﬂl“ op A1 dn-p

for a p-form w, where g is the positive determinent |g,,|. The codif-
ferential operator d: F*—F?~' is given by

(1.2) du=(—1pP*d"y  ucSFr.

Then we have for a p-form u=(u,.,,)

(1.3) (OU)2y 2, = — 7 W2y 2, r=1),
ou=0 (p=0).

An almost Hermitian structure (¢, 9;,) is called to be almost
Kéahlerian (almost semi-Kéhlerian) if the 2-form ¢=(9,,), ¢:,=¢s9,, i8
closed (coclosed). An almost Kéhlerian space is mnecessarily almost
semi-Kéhlerian, and the form ¢ is harmonic. We define some differ-
ential operator? on an almost K&hlerian space M™ They are I', 7, D:
FP—FFT and C, ¢, #: FP—F* . Their representations for a p-form
U= (Uy.,,) are given by the following formulas:

, ,
(1.4) : (Fu)zo»-xp:—“zo (—=L1)%02,7 s %ay- 2, »
(1.5) (Tu)zo--1p=§ﬁ (-1)«7101%5%]0, ,;.'..%. 1
(1.6) (DWs-1y= 2 (=T Faazahie % T
and
(L.7) (Cu)ay =0 o Yg2y 2

b 44
(1.8) (Cu)xg---xp‘—"zszpSD”xaupzz G Ap

D [+4
(1.9) (Fu);, A-xp=Z=2‘Pzapl71§0pauazz--?-~xp .

For the forms u, and u, of order 0 and 1, we define
U, =Lu,=0, Cuy=cuy=23uU,=0, cu,=48u,=0.

It is easily verified that the images by these operators of differential
forms are also skew-symmetric forms. The formulas (1.4), (1.5), (1.8)

2) They can be defined in an almost Hermitian space, and it is seen that Propositions
1.1 and 1.4 hold good in that case.

St

s
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and (1.9) become of the expressions:

. P i
("1'4), (Pu)lo" Ap = (plopru/h“ lp'—; Spliprullmﬁo “Ap !
(1.5) (ru)z,. T ”é( - 1)“17"901“1[3'“10 o f?- ip
and

1 & a
I(18), (Cu)22 Zp “‘2“&2_,:271“@’70%‘022 . ;H ip?

1 2

.(1.9)/ (?9‘%)12 2 = — 7a:2¢20/‘07()¢0‘[u022 . g Zp .

About the relations between I', 7 and C, ¢, we know the following
Ppropositions.

PROPOSITION 1.1. ([8]) In an almost Kahlerian space, the operator
I' 1s a skew-derivation and it holds good that

(1.10) w« I x=—C. _
PROPOSITION 1.2. ([8]) In an almost Kahlerian space, the operator
7 18 a skew-derivation and it holds good that
(1.11) X7 k== —C.
By the same calculation of the proof of Propositien 1.1, we can
show the following proposition. However its proof is easily given by
the formulas (2.5, 6) which are shown later.

PROPOSITION 1.3. In an almost Kahlerian space, the operator (D s
a skew-derivation, and we have :

(1.12) * D x=—7.

Next we define the operators® @ and ¥: F*—i” by

2 i
(1.13) (Du),, zp':izl P Wiy
(1.14) (Fu),, 2, 3,01 '%pppuplr. 0p

for any p-form wu=(u, 2)- On 0-form u, it is defined that
Ou=Tu=0. ’

The fact that the images ®u and ¥u are p-forms for a p-form u is
evident. The operators ® and ¥ have the following intrinsic expres-
sions. Let X, -.-, X, are p vector fields. Then we have for a p-form u

2
(Du)(X,, -, Xp).—_-% WXy ey 90X o, Xp)

(Wu’)(Xv M Xp) = %(QDXb: Tty IQDXp) ’
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where ¢ denotes the endomorphism of the vector fields corresponding
to the almost complex structure. From this point of view, it is natu-
rally considered that the operator H,: F* —&* (0<r<p) is defined by

1 e vp s
(1.15) (H7u’)11" zp::_v__,__ Z E”l:’ /r ?).ll_”ljz:;rgp‘ulpl coe

fryy .
rip—r)! e R

and Hu=0 if » is a 0-form. We have for any p-form u (p=1)
Hu=w, Hu=0u, Hu=%u.

PROPOSITION 1.4. ([8]) In an almost Kahlerian space, the operator
O 1s a derivation, and we have for a p-form u

(1.16) * Q% u=(—1)"0u .

It is evident that if the almost Hermitian structure is Kéhlerian:
then the operator 7 vanishes. The converse is also true. Since 7 is a.
skew-derivation, it is sufficient for the integrability that r vanishes on
0 and 1-forms. As for the operator D, the same argument is valid.
We define the vector valued 2-forms F and N by

F= (Vpgpxﬂ) ’ N= (2§Dp079902p) .

N is identical with the Nijenhuis tensor in an almost Kéhlerian space.
Making use of the notation /\'® introduced in [1], we have
PROPOSITION 1.5. In an almost Kahlerian space, we get

(1.17) ru=—u/F,

(1.18) @u:-é— WN.
PROOF. We have for a p-form w=(u,.,,) by the definition of 7
N 1 0 02 OprrT
(UWNE ). xpzmezéf%--?u 27" Poi0sWeos - 0

=a2<,9 (— 1)“'9_117‘0%“2,3”910“ &f,ﬁ,,,xp

o,
=2 (— 1P OraagWhagapap= — (T%) g2, *
a<fp .

In the similar way, it holds that

3) Let uisa p-form and Q is a vector valued g-form. Then (p+q—1)-form igu=uA
is defined for vector fields Xy, -+, Xp1g—1 bY

1 :
W § () u(Q(Xoy - Xag), Xogsr s Xopag-1)»

where ¢(s) denotes the sign of the permutation ¢. It has the local expression as

(MKQ) (X, Xp+q—1) =

1 £1-- 0g J1-- Ip—
—_ g J1-Jp—-1
(u/\Q)ll‘-}phz—-l: q !(p_ 1) ! Z Ell ......... Ip.}_q_.lQpl A.pqr,ut'o']“ Op—1
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1 .
0103 a3 -
enf2 e aoN, , <

(WA N)p2p= m 0 b

102" Op

= 2%(“”“?”7&@@“@ - o?é-.xp ‘
= 2(27’1’)20 Zp .

Since the operator t,u=u7{Q satisfles that if 7,=0 then the vector
valued g-form @ vanishes, we see from Proposition 1.5 that the follow-
ing conditions are equivalent. ‘

(1) r=0 or D=0.
(2) F=0 or N=0.
(3) The structure is Kéhlerian.

Under the definitions and notations of [1], a derivation 4 can be
decomposed uniquely into a sum of two derivations A4, and A, A4, is
a derivation of type d,, that is, it commutes with the derivation d,
and A; is one of type ¢,, that is, it vanishes on ° Then we have

PROPOSITION 1.6. In an almost Kahlerian space we have

‘(119) @:@7’ ’ 7T=7:, @:@,i ’
(1.20) I'=r,+r,, I'y=I'—r, r=r.

PrOOF. Since I'—r is a (skew-)derivation, (1.20) is the result of
‘Corollary 2.4 of [8], which asserts that I'—7r is (skew-) commutative
with d. The other formulas are evident.

COROLLARY 1.7. An almost Kahlerian space is Kihlerian if and

only if the operator I' commutes with the exterior derivative d, that
18

(1.21) dr+rd=0.

More precisely, sence dI'++I'd is a derivation which commutes with
d, it is sufficient for the operator dI'+I'd to vanish that it vanishes on
any scalar functions. -

2. Some formulas in almost Kihlerian spaces
In this section let M™ be an almost Ké&hlerian space. We first
consider the relations between operators @, ¥ and the other operators.
Many proofs are omitted since they are merely simple straightforward
calculations, though they are complicated in some degree.
PROPOSITION 2.1. Let w be a p-form. Then we have

(2.1) OV u=T0u,
(2.2) Py = (—1)u.
PROPOSITION 2.2. ([8])
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(2.3) dO—Od)yu=(—TI+7)u,

(2.4) (00 -0NHu=(—C+c)u.
PROPOSITION 2.3.

(2.5) (I'®— O u=(d+D)u,

(2.6) (CO—0C)Yu=(0+2)u .

The formula (2.5) shows that D is a skew-derivation since ro—or
is evidently a skew-derivation. Making comparison (2.5) with (2.6), we
can see that the formula (1.12) holds good from (1.10), (1.16) and (1.2).

PROPOSITION 2.4.

(2.7) (70 —O0r)u=—3Du,

(2.8) €@ —Dc)u= —39u .
PROPOSITION 2.5.

(2.9) (D0 —0D)u=—3ru,

(2.10) (B0 — D) U= —3cu .

As for ¥, we obtain the following formulas.
PROPOSITION 2.6.

(2.11) Vad¥u=(—1"("'+7)u,

(2.12) Vo u=(—1)?(C+c)u .
PROPOSITION 2.7.

(2.13) TIPu=(—1)>""(d—D)u,

(2.14) VCTu=(—1)P""(6—Nu.
PROPOSITION 2.8. |

(2.15) Vr¥u=(—1"Du,

(2.16) VePu=(—1)"du.
PROPOSITION 2.9.

(2.17) TDITu—(— 1) 'ru,

(2.18) FITU = (—1)Pcu .

" Next we denote by L (resp. A) the exterior (resp. interior) product
by the fundamental 2-form ¢=(g,;,). The operators L: J*—F**? and
A: FP—FP? are written as

(2.19) Lu=¢pA\u, Au=(—1P?xLxu
for a p-form u. Then we obtain that

(2.20) w* A=A, x L=1Lx,
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(2.21) Lu:(;l)p*/l*u )

A is trivial on 0 and 1l-forms. Their local expressions are

» i Y4 i
(2'22) (L/M’)pahml’p: SD.aauZ]_“ x""——g{ @Ziauhm‘g‘ /'(p—gl: Sopliuil--‘z;- ip
i g
+§j Pri2 %56 2p0
2.23 y =L g
(2.23) (Au)z,. zp—?QD Uoorg--ap *

The following proposition is well known in a 2m-dimensional almost
Kéahlerian space.

PROPOSITION 2.10. We have for a p-form u,

(2.24) (@L—Ldyu=0, (64— Ad)u=0,

(2.25) (AL —LA)u=(m—p)u .
PROPOSITION 2.11.

(2.26) (0L — Loyw=(I"+d)u ,

(2.27) (dA— Adyu= —(C+c)u .
As a corollary, we can obtain

(2.28) (3I' +T'd)u= — (67 +7d)u,

(2.29) (dC+Cdyu= —(dec+cd)u .
PROPOSITION 2.12.

(2.30) (LO—0Lyw=0, (L¥—¥Lyu=0,

(2.31) (AD—OMu=0,  (AF—TAu=0.

Since the formulas in Proposition 2.12 contain no differentiation
they hold good in almost Hermitian spaces. In almost K&hlerian spaces,
we have

dp=0p=0.

Corresponding to these equations, the following is wvalid.
LEMMA 2.13. In an almost Kahlerian space, we have

(2.32) ro=Co=0,
(2.33) ro=cp=0,
(2.34) Dp=dp=0.
PROOF. As the tensor p,p,, is pure with respect to 4, g, v, we get
PLY yPoo= PV oPr2 -
We denote by & (4, g, ») a cyclic sum of the indices 2, p, v. As the
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2-form ¢ is closed, we have
(FSD)xg»:@(z,p,u)SszVp%»
=—&0,7 0.1~ S0, 7 02,
=—=2('P) 1y »
which means I'p=0. As for Cp, since ¢,,0*=mn holds good, we obtain
that
(Co)i=9°F P

L oo
= .—_—2"90‘0 Vlgopo’:O .

Substituting I'e=Cp=0 into (2.3, 4) and (2.5, 6), and taking account of
0p=0, we see that (2.33) and (2.34) are true.
PROPOSITION 2.14.

(2.35) (PL—LINu=0,
(2.36) (CA— AC)u=0.
PRrROOF. Since I' is a skew-derivation, it holds that
I'Lu=TI(p/\ %)

=) Nu+e \I'u=LI"u

for any p-form u. The formula (2.36) is only dual to (2.35).
The following two propositions can be provéd by the same way.
PROPOSITION 2.15.

(2.37) (rL—Lr)u=0,

(2.38) (cA—Ac)yu=0.
PROPOSITION 2.16.

(2.39) (DL —LD)yu=0,

(2.40) (3 A— A9 u=0.

Moreover we can calculate the following relations.
PROPOSITION 2.17.

(2.41) (M A— AlYu=(5—8)u,

(2.42) (CL—LCYu=(d—D)u .
PROPOSITION 2.18.

(3.43) (rd—Ar)u=354,

(2.44) (¢cL—Lc)yu=—Du .

PROPOSITION 2.19.
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(2.45) (DA—AD)u= —cu,
(2.46) (BL—Lu=7%.
3. Formulas related to the Laplacian operator

Let M"™ be an almost Kéahlerian space. We denote by E,,, and
R,;, the Riemannian curvature tensor and the Ricci tensor. We put

1
3.1) S]#=QDZPRP#+_2._¢PURMZ# ,
(3‘2) Slyuw:SDZPRp#uwﬁgpﬂpRplum .
Then S,;, and S;,,, are skew-symmetric with respect to the indices 4,
¢ and v, o. It is well known that in a Kéhlerian space, S;,=S,,,,=0

hold good. Conversely if S;,=0 in an almost Kéhlerian space, then it
is Kéahlerian [5]. It is evident that S,,,=0 means S,,=0. Making

use of these tensors S,, and S,,,,, we can obtain the following formulas.
PROPOSITION 3.1.

(3.3) @ru+Tdu),. ;.= gj} (= 1) P2 02,0 Wiy i 3ty

) k
-+ — 1)t 12 A a oA
1'<j2k#=i j( b Szi'wk Way-3-5-5-apaz 2

1
(3.4) (0CU-+CoUY, 3= P& F o 3,

To 13 0T i
+S utwigw).p—{— 2 LZ)BSM‘O ?’Laz‘is-v ‘3 p *
PROPOSITION 3.2.

D %
(3.5) (5Fu+1’5u)11m2p=§1 V02T Yo - 2,

b

4p

p ‘ 1 i
2 00 x>
-+ ,_gl Slipull"'P"‘lp+—2 Zj; Sﬂilj U p o

D i
(3.6) (dCu+Cduy,,.., = 213 V2PV o%ar52

1 i
20 S, Wy e g

2 3G

Next we look for the relations with respect to the Laplacian
operator d=dd+ dd.
PROPOSITION 3.3.

(3.7) %(AL——LA)%: @r+rdy,

3.8 _;—(A/I—AA)M: — (5C+C)u..
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PROOF. By virtue of Propositions 2.10 and 2.11, we have
(AL —Ldd)u=d(I' +7)u,
(0dL — Lidyu=(I" +7)du . ;
Adding side by side, and taking account of dI'+I'd=dr+7rd, we get
(AL — LAyw=2(dI" +T'd)w .
The formula (3.8) can be similarly proved.
PROPOSITION 3.4.
(3.9) ~_;.(A@-—@A)u= (dC+Cd+ 6T +T'3)u.

PROOF. We use Proposition 2.2. Then we have
0dou— (06 —C+c)du= —o(I' —7)u,
AodU—(0d—I" +7)0u= —d(C—c)u .
Hence taking consideration of (2.28, 29), we see that
(=40 + OMyu=(6I"' +I'6—0r —rd)u+(dC+Cd —dc—cd)u
=20 +TI'r +dC+Cd)u .

PROPOSITION 3.5. In an almost Kahlerian space, we have

4 i
(3.10) (I'Cu~+Cru),,. ;= (du);,. ;,+ z{ N L KPR

Q> e

b i
—Zl‘ 208 7Uz,. ‘;"Xp_é Szif’zj"gopfuh‘.. ,
1= 1+7

for any p-form U= (Uy,. 2,)- .
THEOREM 3.6. ([3]) An almost Kahlerian space is Kahlerian if and
only if
(AL—LM&Hf=0
holds good for any scalar function f.

PROOF. It is an easy result of Proposition 3.3 and Corollary 1.7.
THEOREM 3.7. Amn almost Kahlerian space is Kahlerian if and only if

(0C+Coyu=0
or equivalently
(44— Adyu=0

holds good for awny 2-form u.
PROOF. By virtue of the formula (3.4), we have for a 2-form
'U/:(’M/Z#)

(5C + Co)u— .;_Vpgoéfypuﬂ +Seou,,,.
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Clearly the vanishing of this right hand side for any u,, means S¢=0

since S;, is skew-symmetric. Hence the almost Kéhlerian structure is
Kéhlerian.

THEOREM 3.8. An almost Kahlerian space is Kahlerian tf and only -
if
(4D — O dyu=0

holds good for any l-form wu. .
PROOF. Making use of Proposition 3.2, we have

(0I'u~+I'du+dCu+ Cdu), = e, p U, -+ S,°%,

for a 1-form u=(w,;). The left hand side is equal to (®4u—Adwu)/2, and

thus the right hand side is zero for any u, from which we can easily
conclude that S;, =0. ‘

Now we assume that the almost K&hlerian space M™ is compact.
We denote by <(u, v> and (u, v) the local and global inner products of
p-forms w and v. Then we have

(u, v)= SMnu/\ *x V= Sm(u, YAV

where dV is the volume element of M™ and
{u 'z;):wl—u vArAp
4 p! /?121)

It is a fundamental and well known fact that
(3.11) (du, v)=(u, dv)

is valid for a p-form w and a (p+1)-form ». A local calculation shows
that

L, vy=<{u, Av)
holds good for a p-form u and a (p+2)-form v. Hence we have
(3.12) (Lu, v)=(u, Av) .
PROPOSITION 3.9. In a compact almost Kahlerian space, we have
CHou, vy=(—1) Cu, Hw)

Jor p-forms u and v, and hence

(3.13) (Hu, v)y=(—1)(u, Hv) .
COROLLARY 3.10.
(3.14) (Qu, v)= —(u, Pv) .

THEOREM 3.11. In a compact almost Kahlerian space, we see that
(3.15) (I'u, v)=(u, Cv)

18 true for a p-form u and a (p+1)-form v.



12 Y. Ocawa NSR. 0.U., Vol. 21

PROOF. We have

p
T, 0y=p [35 (=10t 5 20" ) (@+1)]

» N
_&Z{) Qratyto @ Zpr'leo Yy lp/(p—{— 1)!

in an almost semi-Kéhlerian space. The first term in the right hand

side is zero when we integrate it on M". As for the second term, we.
see

“g QUR X o, = (D DU QR U

therefore it becomes (u, Cv), and the theorem is proved.
PROPOSITION 3.12. In a compact almost Kahlerian space, we have

(3.16) (ru, v)= (%, cv)

(3.17) (Du, v) = (u, )

hold good for a p-form w and a (p-+1)-form wv.

4. Covariant pseudo analytic forms on a compact Kihlerian space
We know that in a K&hlerian space M", it holds that

r=®=0, c=0=0, S.,=8,=0.

Apuvo
Therefore the formulas in §2 and §3 can be slightly simplified. We
make the list of them in the following. '

PROPOSITION 4.1. In a Kahlerian space, we have

(4.1) d0—0d=—-T, 60—05=—C,
(4.2) ro—or=d, CoO—oC=34,
(4.3) SL—Lé=TI", dA—Ad=—C,
(4.4) rd—Ar=s, CL—LC=—d,
(4.5) dr+rd=0, 0C+Cé=0,
(4.6) or+ré=0, dC+Cd=0.

By virtue of Proposition 3.5, we see that
(4.7) rc+Cr=4

holds good in a Kéahlerian space. Since I' and C are adjoint operators
in a compact case, we have

THEOREM 4.2. In a compact Kahleriam space, it s mecessary and
suffictent for a p-form u to-be harmonic that. u satisfies the equations

Tu=Cu=0.

Now we treat of the covariant analytic tensors. Let M™ be a
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compact Kéhlerian space. Then a pure tensor is called to be analytic
if its covariant derivative is also pure. Let ¢=(¢,*) be the complex
structure. Yano-Ako [4] defined a covariant analytic tensor w of order
p by the condition that u is pure and satisfies for any vector fields
X, Y, -, Y,

(4.8) (O(pX)u—0(X) (%o 0)) (Y, oo+, ¥p) -+

Vi .
+§Z"‘2u(Yl’ cer, @0(X)Yw eee, Yp)

P
_%‘Zu(@y’p cee, Q(X)Yw cee, Yp):O R

where 6(X) denotes the Lie derivative with respect to X and uo.¢p is
defined by

(w °§D>(X1’ X27 ftt Xp):u(SDXp Xz’ A Xp) .
They remarked that if u is free from the condition of purity and is
skew-symmetric, then the condition (4.8) becomes
(4.9) t,du—2di,u=0.
If w is a 1-form, then (4.8) is equal to
(4'8), gplpruy_goppV}tup: 0.
Taking the skew part of (4.8), we obtain
4.9y P U+ 7 W) — (7 U+ 7 %,) =0,
which are the same as (4.9) in the case of 1-form.

From the above consideration, we take a p-form % which is a
skew-symmetric tensor of covariant order p and call it to be covariant
pseudo analytic or simply pseudo analytic when it satisfies the equation
(4.9). Since ¢ is a (1, 1)-tensor, we have ‘

LU=u/\p=0u
for a p-form u. This implies that a p-form wu is pseudo analytic if and
only if it satisfies
(4.10) Odu—2d0u=0.

From (4.1), the equation is equivalent to

(4.11) dou—Tu=0
or
(4.12) Odu—2I'u=0

in a Kéhlerian space. We study the properties of such forms on M".
If we take a harmonic form u, then we have I'u=0 and du=0 by
virtue of Theorem 4.2. Hence (4.12) is trivially true and « is pseudo
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analytic. A closed form w is pseudo analytic if and only if @u is
again closed or it satisfies I'u=0.

Suppose that a p-form u (p==0) is pure. If its covariant derivative
pu is pure too, then we see that du is pure and that

Cu=0u=0, APu=plu, QOdu=(p+1)I'n

hold good. Hence I'u is closed and coclosed from (4.6), which means
that pru=d®u is harmonic. Therefore I'u=0 is valid. By virtue of
Theorem 4.2, 4 must be harmonic. Thus we have

THEOREM 4.3. ([6]) If the covariant derivative pu 1is pure for a pure
p-form u wm a compact Kahlerian space, then u is effective harmonic and
covariant pseudo analytic.

THEOREM 4.4. In a compact Kahlerian space, let u be a covariant
pseudo analytic p-form. Then @Fuw 1s pseudo analytic for any positive
integer k if and only if w satisfies the equation

(4.13) Pdu= —4du .
PROOF. We show by the induction. For a pseudo analytic form
U, we have '
A®(u) — (D) — —_51%_ (@ -+ 4du) ,

therefore (4.13) is equivalent to the fact that @u is pseudo analytic.
We assume that u, Qu, .--, @*~'u (k>1) are all pseudo analytic. Then
we can obtain by a similar calculation that '

AD(@ ) — [(Pu) = — 205~ (P°du-+ Adu) .

This shows that @*u is pseudo analytic under the condition (4.13).
COROLLARY 4.5. For a closed pseudo analytic form u, ®*u is pseudo
analytic, too. : .
Next we consider a p-form u satisfying the condition

(4.14) QU= —p*u .
For a 1-form (4.14) is always valid, and if w is pure, then (4.14) is
satisfied. From (4.1) and (4.2) we get

Pdu= —(p*—1)du-+20I"w .

THEOREM 4.6. In a compact Kahlerian space, suppose that a p-form
U (p=2) satisfies (4.14). Then the necessary and sufficient condition for
u to be covariant pseudo analytic is that "

dOPu=0.
PROOF. We have from (4.1) and (4.13)
4.15) = (dOu, dDPu)= — (P*du, du)—2(I'u, Pdu)+ (I'w, I'u)

— (" —1)(du, du)-+(Tu, T'u) .
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Therefore d@u=0 means du=0 and ['u=0 if p==1, and = is pseudo
analytic. Conversely, if w is pseudo analytic, then we have d@u=1"u.
Then the above (4.15) becomes (p’—1)(du, du)=0, hence u is a closed
form. From the definition (4.10), we can conclude that d@u=0.

We pursue covariant pseudo analytic 1-forms which are excluded
in Theorem 4.6. For a 1-form u, (4.14) is valid and (4.15) is of the
form

(4.16) (dPu, dDu)=("u, I'u) .

Therefore for a 1-form u, dPu=0 is equivalent to 'u=0. We want
to make up the integral formula for a 1-form to be analytic.
LEMMA 4.7. In a compact Kahlerian space, it holds that

(dCu+I'0u, Qu)=(0u, ou)—(Cu, Cu)

Jor a p-form u. |
PROOF. By virtue of (4.6), (4.2) and (4.1), we have

(dCu, Qu)= —(u, oI'Ou)
= —(u, 60I'u) — (u, ddu)
= —(u, ®6I'u) + (w, C'u— ddu)
= (Qu, 6I'u)+(u, dou—1I"Cu) .

It follows easily that the lemma is true.
THEOREM 4.8. For a 1-form w in a compact Kdihlerian space, we
have the following integral formula.

(4.17) %(d@u—ﬁu, dOu— )= (5w, ou)+ (Tu, [u) .

PROOF. We put A=I"u—d®u. A is a 2-form whose components are
A= @ 7+ 7 %) =9 (7 Uz 7 a) - -
Then we can show that
FrA;,=(dCu),+ (['ou),+ (P4u),
gpf‘!’[7pAM:(ol5u)2~(F(Z’u),l—l—(Au)l1 .

Therefore we have

(A, A)= %_S A, AV

:S V‘Azﬂgo/‘“uadV—]— S gof‘PVPAMuldV

= (dCu +I'ou, Ou)— (du, @2u)+(d,5uéFCu+Ziu, u)
Making use of Lemma 4.7 and (4.14), we get ’
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; (A, A= (déu—ICu+ du, u)

= (dou-+CIl'u, u)=(0u, ou)+ (I'u, I'n) .

THEOREM 4.9. In a compact Kaihlerian space, a 1-form u s co-
variant pseudo analytic if and only if it satisfies '

IT'v=0,

and then u s coclosed.

PROOF. Necessity easily follows from (4.17). If a 1-form u satisfies
I'n=0, then dOu=0 is valid from (4.16). Thus w is pseudo analytic
and ou=0 is obtained from (4.17).

Lastly we see the integral formula for a p-form w to be pseudo
analytic. We have

(dOu —TI'w, dOu—I'u) = (dDu, dPu)+ (I"u, I'n)—2(dPu, I'n)
and making use of (4.6) and (4.2)
(dOu, I'n) = — (dCOu, u) = — (PCu -+ ou, ou)

= (Cu, Do) — (du, du) .
Hence we obtain
THEOREM 4.10. In a compact Kahlerian space, the formula

(4.18) dOu—TI'w, dQu—I'u)+2(Cu, Oou)=
2(6u, ou)-+"u, I'n)+ (dOu, ddu)

holds good for any p-form u.

From (4.18), we have the following two theorems.

THEOREM 4.11. In a compact Kihlerian space, let u be a coclosed
p-form. Then u is covariant pseudo analytic if and only if it satisfies

INu=dPu=0.

THEOREM 4.12. In a compact Kihlerian space, let w be a p-form
satisfying Cu=0. If u s covariant pseudo analytic, then u is harmonic.
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