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§1. Preliminaries
Let C(X) be the set of all continuous real-valued functions on a
compact Hausdorf space X and let B be a separating subspace of C(X)
containing constant functions. In [1], Prof. Bauer has proved some
necessary and sufficient conditions that any continuous function on the
Silov boundary I' of X with respect to B is extended to a function in
B. Prof. Bear has called B a Dirichlet space when B satisfies the
foregomg condition.
" In the present note we shall prove some theorems with respect to
two Dirichlet spaces with homeomorphic Silov boundaries.

§ 2. Definitions and the eguivalent conditions

Let C(X) be the set of all continuous real-valued functions on X
with uniform mnorm. We consider a linear separating subspace B of
C(X) containing constant functions. We denote I' the Silov boundary
of X with respect to B. Let B* be the space, of all continuous linear
functionals of B, as usual with W*-topology. The set of all W*-
continuous linear functionals on B* are isomorphic to B under the
natural correspondence. We may therefore regard B as the space
of continuous linear functionals on B , or their restriction to subsets
of B*. '

We shall write

To,={FEB; F(L)=||F[l=1} erererrererrrernrrireineinnan (1)

and consider X as embedded in B*. Then evidently XcT, Tjis
known to be the closed convex hull of X in B*. Tet P(X) be the set
of all probability measures on X. For each point z of X we put

_{peP(X) (%) u(2), VMEB}

‘We denote ¢, the point measure of x. A point x of X is called a pomt
of Choquet boundary of X with respect to B When M,={¢,}. Prof.

‘Bauer has proved that the Choquet boundary is the set of all extreme
points of T,
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Now B will be called a Dirichlet space on X if B|I'=|C(")". From
(1) it is clear that T, can be identified with the set of all probability
measures on /' if B is a Dirichlet space.

THEOREM 1. (Bauer)
Let X be a compact Hausdorff space and B be a separating sub-

space of G(X) containing constant functions. The following assertions.
are equivalent ;

(a) B is a Dirichlet space on X, .

(b) B is uniformly closed and a lattice in natural order,

(c) for each point x&X there exists a unique probabﬂlty measure
on [' representing z,

(d) T, is a simplex in the sense of Ghoquet [5] and the set of all
extreme points of T, is closed.

Here we shall say thtat a measure ¢ on I represents a point x&=X if
u(x):S udy (VMuesB).
r

Several necessary and sufficient conditions for a convex compact subset:
of a topological vector space to be a simplex have been discovered.

Example. Let X be the unit closed disk in R? and H be the set
of all functions, continuous on X and harmonic. in the unit open disk.
Then H is a Dirichlet space. '

THEOREM 2. (Bauer)
For each convex compact subset X of a topological vector space
E, the following three assertions are equivalent;

() X is a simpl,ex'and the set X,, of all extreme points of X, is
closed, .

(b) for each % in X there exists a unique probablllty measure p,
on X, such that x is the barycenter of g,.

(c) the space of all restrictions on X of continuous affine functions
is a Dirichlet space on X.

§3. A main theorem

THEOREM 3.

Let B; (=1, 2) be Dlrlchlet spaces on compact Hausdorff spaces on
X,;. If their Silov boundaries I", and I', are homeomorphlc then Tp and
Tp, are both topologically and affinely isomorphic.’

' PROOF. Since, for each ¢ (1=1, 2), B, is a Dirichlet space, Ty, be-
comes a simplex and the set (Tj,), of all extreme points is closed from

1) We denote by B|I" the set of all restrictions I of u&B.
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theorem 1. Therefore (Ts).=1"s. Tp is a convex compact set in the
topological vector space B and from theorem 2 for each #; Tp,, there
exists a unique probability measure ts, on I'; of which barycenter is
x;. Since the barycenter of any probability measure on I, is contained
in Ty, we can set a one-to-one correspondence ¢, between Ts, and the
set “P(]}) of all probability measures on I, Then ¢, and ¢, are
continuous. It is clear that ¢, and ¢,' are affine mappings. Let the
homeomorphic mapping from [, into Iy, be h. Further, for any
preP7) let us put

@()&) =\ gohdy  (YeECTy).

Then ¢(p)=P(I'y), and ¢ is a one-to-one continuous linear mapping
between P(I')) and P(I'). ¢~ is also a continuous linear mapping. We
put p=¢, "' cpop,. Then both ¢ and ¢! are continuous affine mappings.

COROLLARY.

Let X; be a compact convex subset of topological vector space E,,
for each i (i=1, 2), and A, be the set of all restrictions on X of con-
tinuous affine functions in E,. Assume that X, is a simplex and the
set of all extreme points of X, is closed. Then X, and X, are both

topologically and affinely isomorphic provided that their Silov bounda-
ries I' and I', should be homeomorphic.

REMARK. Under the mere conditions of theorem 38, X, and X, in
general are not necessarily homeomorphic. For example, in let H the
same as the example in §2. Let X, be the union of the disk Ne]l<1/2
and the unit circle. Let X, be the union of the circle [|#]]=1/2, the
unit circle and the set of all points between the two circles. We put
B, all restrictions of H on X, (¢=1, 2). Then each of the Silov bounda-
ries of X, is the unmit circle. The Dirichlet space B, and B, satisfy
the conditions of theorem 3, but X, and X, are not homeomorphic.

§4. Gleason parts of Dirichlet spaces

We decompose the convex set T, into disjoint convex subsets, called
parts or Gleason parts of T,.

The relation ~ is defined as follows; z~y if and only if there
exists a constant ¢>1 such that 7

1/e < u(m) uly) <c
for all positive v B. The equivalent classes of this relation are called
parts or Gleason parts of T,.
For any z in Tp F,={x} if 2 is an extreme point of T, and F, =

{the union of open interval in T, containing x} if « is not an extreme
point. F, is called the minimal face containing z.
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Prof. Bear has proved in [2] that two points z,, x,& Ty lie in the
same part of T, if and omly if F, =F,,. Therefore each part T; is
convex.. '

THEOREM 4. .

Under the same conditions of theorem 3, two points z,, yleT,;l lie
in the same part of T, if and only if corresponding points x,, y,& Tp,
lie in the same part of T,

PROOF. We assume F,,==F,,, then any open interval in T, contain-
ing x, and any open interval in T, containing y, do not intersect.
Since the correspondence between Tpfand T, is affine from theorem
3, any open interval in T, containing %, and any open interval in Tp
containing y, do not intersect which means F, ==F,,. Similarly F, &F,,
implies F, ==F,,.
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