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As a continuation to a previous paper, in §1 a grand partition
function is rewritten so as to deal with a system of particles with
hard core, in §2 is presented an integral formula expressing the
inverse of the volume of the intersection of a sphere and several
planes, which formula is employed in § 3 to represent the mean value
of the weighting factor. '

In §38 a partition function with a fixed number of particles is
evaluated by applying the method of the previous paper, taking a
point representing a probable distribution of particle for the origin of
the integration space, and replacing the weighting factor by its average
over the intersection of a sphere and two planes, N the number of
division of the volume occupied by the system of particles being fixed.

In §4 the limit N— o is taken to reach the final, fairly simple,
expression (68). In §5 are described three distributions, a uniform
distribution, a crystalline distribution and an interpolation distribution.
In § 6, the pressure of a system of hard spheres is computed based on
three distributions and is shown in Fig. 1.

While the uniform distribution leads to no phase change, the
crystalline distribution as well as the interpolation distribution lead
to a phase change. The interpolation distribution gives a fairly good
result agreeing with the virial expansion and Wainwright-Alder’s com-
putations, up to the phase change, diverging from them beyond there.
To improve the present method, setting up of a better distribution is
proposed in §7.

§ 1. Reformulation of the partition function

The grand partition function Z of a system consisting of particles
interacting through a pair-wise potential G(r, ') may be expressed, as
in a previous paper?, by the introduction of variable x, that describes
the number of particles assigned to an infinitesimal cell at the point r,

Z=lim{ exp{_% > G, r’)w,xr,l T F,)de, (1)

N-—co v
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where the summation > extends over all pairs of different x, 1/, f(x)
being defined by

f(x):i o(x —m) <zV)m.

m=0 m! N

(2)

In the following the interaction potential is assumed to have a
repulsive core of infinite strength. The variable z, will be then limited
to take only two values 0 and 1, the possibility of multiple occupation
of particles at the point r being denied, so that the function f(x) is
to be

f(x)=5(m>+—zN15<x—1) (3)

instead of (2).
When each of two variables x and «’ is limited to take only 0 and
1, one may have an equality

exp(—G(x, ¥)xx')=1—h ez’ (4)
where the k.. is a function of only the distance |r—1’

Ry =1—exXp(—G(x, 1)) r=1
(5)
=0 r=1r.
It is to be noted that the matrix H=(h,.) has no diagonal elements,
so that the eigenvalues of H will be No(p)/V—1im i(r)= Ng(p)/V—1, ¢(p)
7—0

being defined by
(p) =_NV_ S ey | 6)

That lim A(r)=1 results from the existence of hard core.
Therefore the partition function Z may be put in the following
form ‘
Z:limS I (L—h@,0,) - T1 (5(mr)+ﬂ5(xr_1))dmr (7)
N—oo J (2, 17) r N
the first product TI extending over all pairs of different r, r'.
In what follows, the abbreviations

(r,x’) 4

Wim 1 (U—ho), W= 1L 0@+ 2/-0@,—1)|, dX=11 do, ()

will be employed.

The sum ,of all x.’s represents the total number of particles.

One may decompose the integral into the sum of integrals over
parallel planes D x,=L, 0 <L < co, and rewrite (7)

Z=— 11mS:° J(L)dL (9)

N—oo
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J(L)= S W, W,o(L— 3 w)dX . (10)

In the integral (10), the number of particles is equal to L. It is
to be noted that the number density ¢ is expressed by L/V.

When the total number of particles is given, one may picture a
mean distribution of particles. The distribution may be expressed as
the mean value of the variable z,. At lower densities a uniform dis-
tribution may prevail while a crystalline distribution will be reached
at higher densities because of the existence of hard core.

It is an idea to translate the origin of integration space to a point
that represents roughly a mean distribution of particles and to carry
out the evaluation of (10) around the point.

The translation of the origin from %.,=0 to z,=c¢, >)c¢, being

equal to L, leads to the change of variables from =z, to ¥y, defined by
2,=¢C,+Y,. One sees then that

W, = eXp‘r—;-Z log (1—"A,, xrxr,)}

= exp[éz 10g (1 —h’rr'crcr’) _%2 hrr'yryr' '—2 bryr+MJ (11)
where the b.’s are defined by
b3 by, (12)

M standing for the remainder term.

Therefore the Bolzmann factor W, may be regarded roughly as a
function of > y? and > by, under the restriction >)y,=>] (x,—c,)=0.
In turn the mean value of the weighting factor W, may be expressed
approximately as a function of >} y,* and > by, under the restriction
>¥.=0, along the reasoning in §1 of the previous paper.

§2. An Integral Formula

In the following it is required to evaluate the mean value of a
function over the intersection of a sphere and several planes. In this
connection it needs to express the inverse of the volume £ of the
intersection.

In a space of dimension N, let the equation to the sphere be

R=Xz.2 (13)
and the equations to » planes be

S,=Sa,x,  a=1,2 ., 10, (14)

the suffix » ranging from 1 to N.
The volume £ may be easily evaluated as follows
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2=\ oaB-35)) I 8(S,~ 3 a,2,) - 11 da,
1 €tioco\ nt+1 >’M/ .
=) Wao(| | exs 5 (B=2a)

+30,(8,—3 aa,mr)]du Mdv,, e>0

- 1 ( SEHOO) " exp[l UR+>30,S,+ ;—uZ(E %%r)z]

2(27r(?;)n+1 E—1ico 2
. (E)TNH d’U“ . d%
u .
(2m) " ' 1 -
T U
= WS eXpLE R+Z 'UaSa"l‘ —27‘2 baﬁfuavﬁj
_N :
-u Ydu IT dv, 15)
where |
o 3 B (16)
The integration with respect to v gives
(2@%;”’ ' . - ‘ e
2= Se !_R_ B_laSaS :I"M/W 5 d
4nt A/ det B Xp_z( 20 (B™)apSaS) u
(N—n) 1 o
_ @) ' 1 ( R— (B™),5.,55 ) - an
v/det B 2I'((N—mn)[2) 2
B= (baﬂ) .

Hence one may prove the equality, with the use of real integration
variables u, v, ---, v, ‘

1o=n) (N-n-2)-det B- {"au11{" an,
0 o o —COo
exp| — % R—310,5,— 2L S b0 | u T (18)
g T gy R

§3. A representation of the mean value of the weighting factor

A representation of the mean weighting factor (W,> as a function
of R=>9," and S=3)by, under the restriction > y,=0 may be given
by

W=\ W3R~ 4)0(5— S b,3)0(S v)d V) L)

LR WRLCES L AAL ALY (20)



July 1970 An Approximate Method for Evaluating a Class 27

Reference to the formula (18) in § 2 yields

1/2= (27c)—%CS:Ddu So_ooodfv Sm dw w™*

-0

. exp[—;%uR-—vS~ 2—17/;(7)2 Db+ 20w br+w2N)+%log u]

C=(N—4)(N b2 —(2b,)?) - @1
As in § 2, one has ‘
AW y=\ W3R~ 538~ 2 by (X 4l ¥

zm Sggexp[—%”rR—l—sSJ - drdsdt J, ' (22)

where the paths of integration for », s and ¢t are upward straight lines
parallel to the imaginary axis with positive real parts, J, standing for

Jo = 1;[ SeXp[ - ‘g—yr2_3bryr'_ ter - (5(2/1.—-{— Cr) + Z—JV-K a(yr'—'_ Cr— 1)) dyr

.—_-exp{—%z ¢ +8 > b, +tL

+> 10g{1+_zNKe-t*f/z exp (’l”Gr-Sbr)H . (23)

Replacement of W, in (10) by (W,> leads to

THL) =\ W3S yd ¥

s @

C 1
—— e R— l 1""‘h / ‘/ -
S SeXp[ 5 > log( rr/CrCrr) 501

T 2(2i)
+ 20w > b+ w'N) + -lzilog u] S I(M)w ™t dr ds dt du dv dw dq

where the representation of the delta function
€+41co

(S yr>=§%8 expg vy, -dg, e>0

€400

is used and I(M) stands for

I(M):' ! o Sexp[— u;qﬂ 2 yrZ_LE h’rr’yryr’
(2r)* 2

——(v—s+1)2b,yr—q2yr}-e”olY. (25)

When M is cancelled in the integral I(M), evaluation of 1(0) is
immediate to give
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1(0)= exp[ — é_log det(uw —r+ H)

1

53 Qee (0= 8+ e+ (v -5+ 1y +q>] (26)

where the matrix @ denotes the inverse of the matrix w—r-+H or
Q=1/(u—r+H).

If an integral obtained by substituting A for e in I(M) is divided
by I(0) to define <(A), a weighted mean of A, one sees then that

I(M) =1(0)<e™)

—1(0) —1—,<M">
w=0 Y}
=1(0) exp[<M>+—21—T(<M D —<MY)

o (%) = B+ 200 -+ | (27)

(Cumulant expansion)

Finally one gets

J*(L)= ¢ . g exp U - dr dsdt w=*du dv dw dqg (28)
2(2ri)*
U= %2 log(1—h,.cc)— —2£~ (©* 2202+ 20w D) b+ Nw?)
u
N o '
+~§-log u-+log J,+log I(0)+log (™). (29)

§4. The limit ¥V— oo

It is to be noted that the eigenvalues of the matrix u—r»-+ H must
be positive for the integration with respsct to y, to be feasible. Since
the eigenvalues of the matrix H, that is, N¢(p)/V—1, grow proportion-
ally to N, the variable u is expected to grow proportionally to N.

Reverse of the order of the limit N— co and the integration in (9)
presents no serious difficulty if the variable w is replaced by N/Vz, ¢
being a new wvariable. _

Prior to passing to the limit N— oo, one may regroup terms of U
as follows

U=U,+U~+U-+U, (30)

Uls_lzilog u—~%log det(u—r -+ H) (31)
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U= 237 Qe (0—5+ Dby @)((0— 5+ b +0)

—~2L (©* D702+ 20w D b+ w?N) (32)
" |

U,=log J, | (33)
U,— _;_2 log(l—hyc.c,)+log (exp M (34)

and perform integrations with respect to w and ¢q. These integrations
amount to elimination of variables w and ¢, and reduce U, to

2
Ul =~ (051" 3 @re (b — )b —) — 5% (b, by (35)
U
where b denotes the mean value of b,, or
b=>1b,/N .- (36)

Remembering that the matrix H has eigenvalues Ng(p)/V —h(0), one
may rewrite U, :

Ulzﬁlog_mu__ﬂ__*{

2 u—r—nh(0) 2

In the limit N— oo, U, tends to

23 log(1+ Ne(p)/V(u—r—h(0))) . (37)

1 4 .
?VT(’)"-l—h(O)) 5o Slog(1+ @(Pp))dp
— > Ver+ , (;;)3 { [z0() —Tog(1 + zo(p))1dp B
because of the relation
ey ) PP =1 () =h(0) (39)

To proceed further, an assumption is made that the ¢’s are finite
at a finite number of sites and of order 1/N elsewhere. One may then
establish the following quantities «, 8, 7, ¢, v and B(s)

a=lim > (b,—b)*/uL (40)
B=1lim 3 Q,p (b,—b)(b —b)/L | (41)
r=lim ¥ be,/L=lim S Ay o0, L ' (42)
p=1m 3 log(1 —hpp ¢, /L (43)

y=1lim 3 ¢?/L ’ (44)
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B(s)=1im 3] exp(rc,—sb,)[N=1im >’ exp(—sb,)/N
=_‘17S exp(—sb,)dr=mean value of exp(—sb,). (45)

The U,/ may be reduced then, by elimination of v, to

%a"‘_ﬁﬁ (s—1=506=17,  O=ap/a—F). | (46)

The U,, which tends, in the limit N— oo, to
L(—%ur+rs+t)+Vz exp(—t—r/2) - B(s) (47)
reduces, by elimination of ¢, to
L(_%qus—}z_oﬂ)JrL(log 2-+log B(s)——logo—l—l) (48)

Hence in the limit N— co there remains only one term (Vz— Ly —L)r/2
that depends on r. Integration of exp[(Vz—Lv—L)r/2] with respect to
r along a line parallel to the imaginary axis leads to a delta function
d(Vr—Ly—L) except for a trivial constant factor.

Therefore one gets the relation

e=L(1+v)[V=o(l+4). (49)

Treatment of (e”) is troublesome. - From (11) one sees®that
M= %Z{log(l e OxCrr —Pgs (Ol + Cp Y+ YY)
- IOg(l - h’rr' Crcr’) + hrr' (cryr' —+ CrYs -+ ?errf}

h,2c.c. '
= "—_Z{ﬁi““ (CxlYp - CrpYp+ YelYy)

1 h
4 ( m“—ﬁ) (cryr, +Cp yr+ yryr’)z

2 \1—h.ce,.
+ ( i ‘)3(6?/f+c/y +yy/)3+--- : (50)
3 1 hrr,c Cr, roJgr r r JrIr

The Welghted mean values of y,, ¥,%, and ¥,4,%, areffound to be
Y= —0Cx
YY) =Crr , (51)
YrYr Y = Q@ Qri+ Qe Qrr + Qur Qe+ QeneQpr

respectively, where

Qr=2 er'((’v —8-+ 1)br' -+ Q) . . . | (52)
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Since the matrix @ is the inverse of w—r+H and w is assumed to
be of order of N, one sees that

0(1/N) r=r
_ (53)
[ 0(1/N?) L of
Q,=0(1/N) | | (54)
consequently
WYe=0(1/N)
0(1/N)  r=Y
YY) = {
0(1/N?) . rv
<yryr’yr//>= 0(1/N2) v ) (55)

and further
Ye'Yrr> =01/ N?) ra=v

We'YeH=0(1[N?)  r5=r.
In general the weighted mean of the product of 2m —1 or 2m factors
¥,’s is of order of N—™ at the highest. Therefore one gets in the limit
N— oo ’
1 3 h’ / 2 2 2 2 2
A= = lim 33 [ (20, Ky (UK )

h’rr’ T l"

1., 2¢,? 1
=—_lim hrr?( £ )
4 > u—7r N (u—r)’

Lty V2

 =— 1 Shz(r)dr

S Pdr. (56)

Other terms in the expansmn of log (exp M> vanish in the limit
N— co.
The last term of (56) may be changed into
_ R S Y .
TR @' (P)dp

and incorporated in U,.
One reaches then a fairly s1mple expressmn of U

U=

1 40 i

—_ —log(1 d
52y S[w a4 | 0g( +rsD)J p
+L(logz~,ldg a—l—l—i—/,e—y—zgh?(r)dr

L0615 +log Be)| . . D
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It is to be added that the factor w*du in the expression of J*(L)
is changed into —(V/N)’’dr while the coefficient C turns out to be of
order of N?®. Therefore the integral J*(L) has a definite expression in
the limit N— co.

In the limit V— oo, the limit of V~'log Z is to give P/kT, where
P means the pressure of the system at the temperature T, k denoting
the Boltzmann constant. Hence one reaches the final expression

PJET—1im V' log Z—Maximum [+ log &+ F' (58)

Fe04o|—logo+l+ y—%urg W(r)dx-+ Extromum (59)

E=%0<s-—1)ﬂ+rs+1og B(s) (60)

0= \[eo— 2 ei—log(t ) |dp. (61)
2(27)° 2 ?)

Obviously one sees that the density o defined as L/V in §1 agrees
With the density defined according to statistical mechanics

0
dlogz

lim V-tlog Z. - (62)

§ 5. Three distributions

Selection of a distribution ¢, would give no effect on the final
result if subsequent integrations could be performed exactly.

In the present approximation, the selected distributions present
fairly wide discrepancies in final results. To select a good distribution
is an important problem. This paper examines three distributions.

1) A uniform distribution ¢,=L/N. (63)
This distribution seems to prevail at lower densities.

2) A crystalline distribution ¢,=1, s denoting lattice points of a
face-centered lattice, ¢,=0 elsewhere. (64)

More definitely speaking, the face-centered lattice is generated by
three unit vectors e, e,, e,

e, =10, 1/2, 1/2), e,=I(1/2, 0, 1/2), e,=I(1/2, 1/2, 0) (65)
or
S=1mn,8, -+ N,e,-+ 1,8,

where n,, n, n, stand for integers and the lattice constant - 1 is so
chosen that the volume of a unit cell I°)/4 may be equal to the volume
assigned to one particle V/L=1/s.
- This distribution seems to prevail at the highest demnsity.
3) An interpolation distribution



July 1970 - An Approximate Method for Evaluating a Class 33

¢s=c+ (1—c)L/N at lattice points s
(66)
¢s= (1l—c¢)L/N elsewhere

)

The parameter ¢ should vanish at o=0 and i'each_ 1 at o=o0,., the
highest density. It is assumed here that ¢ is proportional to o, or

C=0]0 oy - o o (67)
1) For the uniform distribution ¢,=L/N, all b’s have the same value

og h(r)dr=0¢(0). Hence one sees that

a=0, B=0, r=b=0cp(0)

5 (68)
#: __E : y:O y B(S)I: eXp(—Sb) -
U= VO(o)+ L 1ogz——10ga+1~%»ago(0) . | (69)
2) For the face-centered lattice
$=1,@, 1,8, + 1, (70)

generated by e, e, e, there exists an’in‘verse 1attice, fh:it is, a .body-
centered lattice generated by three vectors f, f,, £,

fo=(-1,1, D, f,=01, -1, DI, £=1,1, DL - ()

that satisfy the orthogonality condition

In general a distribution ¢, periodic with respect to the face-
centered lattice may be expressed as a Fourier series

cr:'jI(}Eﬂq)eiq", f(0)=1 o Rk

where gq ranges over all lattice points of a body-centered lattice, or
q=2n(mf, +mJf,+m,tf,) (73)
m,, m, m, ranging over integérs. v :
The condition f(0)=1 ensures that the sum > ¢, is equal to L the

number of particles.
One gets then

by=2> hyrCp

= ——JI\:/,—ZZ f(Q)eiq-r’hrr, = Zf(q)eiq-r 2 gta —r)hw

L
N

— L5 pa i S (74)
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and further

a=t0 3 £1q) - ¢¥(q) R | . (75)

B—ro SV _£(D(@) A , (78
_E 1+z‘ go(q) 4' ‘ _ ( )
—090(0)+0-_/ (Q).*(q) (77)

Where the summation >} excludes the term at q=0.
“In partlcular the crystalline distribution (64) glves all f(q) 1 and

p=3SV1og(l—h(s)), v=1 and c=2¢ O (78)

while the interpolation distrifoution (66) leads to f(0)=1 and f(g)=c for
q-+0, and further

v=c*, t=0(1+c

a=c"70 37 ¢*(q), P=ca DY 1—? (g()Q) | "
r=00(0)+¢0 3 ¢(Q)

§ 6. A system of hard spheres

The interaction potential G(r, r') between two hard spheres of di-
ametergl at r and r/ is infinite at the distance |r—r/| less than 1 and
vanishes at |[r—x'|>1. So one gets

1 ri<<l _ - - o _
h(r):{ | (80)

0 Iri>1 o
o(0)— S exp(ip - vr)olvr r|<1

,, = ¢(0) A(p) . , (81)
where '

. 9,,(0)___?T A(p)=3 - Sinp—p,cosp" o . (82)

3

In evaluating @, use is made of the relatidn

Sm[w/l — —%— A2 —log (1 + 9'0/1)]1029@ '
4] .

n=1

— n— 1 o
=So [Z"(-;l;)'“ A" —log(1+ ) Jp"dp 2( ) 2, (83)
where the abbreviation
xn=S°°/1np2dp | | - o (84)
0 s o

is ‘used. Complex integration gives
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3

hehey |
3t 15 . 8¢ 34 . 3z 40949 -

A=F 20 g0 o8 g on AU929 85
2 32 2 105 92 172082 (89)
3z 92377

“T T2 500500 ) B

The integrand of. the right side of (83) tends to zero far more
rapidly than that of the left side as p tends to infinity. D
In evaluating «, r, use is made of Poisson’s summation formulas®

[eee] T or—g)=exs BN CU
Z 5(p q) [?20 ;3] 2 e~ ip*s ’ ‘ - » (87)

where [ee.e;] denotes the volume of a unit cell spanned by three unit
vectors e, e, e, s and q being defined by (65), (70) and (73). Multi-

plying both sides of (87) by any functlon g(p) and 1ntegrat1ng Wlth
respect to p, one gets

. 1 e
— . ipes .d
oS o@=3 5| e vom) -dp
Lo e el
=== S g(p) sinsp-p-dp, s=|8| (88)
s 2m’s Jo

and in partlcular for g(q) =0(q), ¢*(q),
ono(q) h(s) 2e(1~s> (89)

o zq; oX(q) = *1%2 (s°—12s-+ 16)e(2—-s) . | k90)

Evaluation of B(s) is- cumbersome. Twelve planes, each of which
bisects perpendicularly the segment connecting a lattice point to one
of its twelve adjacent points, cut out a dodecahedron®, which is divided
into twelve similar pyramids having their respective vertices at the
lattice point and their respective bases on the above planes. Omne of
the pyramids is bisected by a plane into two similar tetrahedrons. B(s)
is evaluated by averaging exp(—sb) over one of the tetrahedromns, that
has its four vertices at

'_a_u4(200) a,=1/4-(1,1,0), a,=I/4-(1,1,1)
and o o : (91)
e, 0) | | o

The average of a tunctlon g(r) is approx1mated by
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> w(s) - g(s)/m? L (92)

where s stands for (m,a,+m,a,+ma,)/m, m, m, m, ranging from 0 to
m under the restrlctmn m,+m, +m <m and the Welght w(s) is defined
to be :

1/4 When s is at a vertex
7/6 on an edge

3 on a face

6 ~ inside

of the tetrahedron. A mbre detailed descriptidn will be found in a
separate’ paper?®. '

Instead of the density ¢=L/V, a dimensionless quantlty o=0p(0)
is used in the following as a modified density. At the ¢losest packing
the lattice constant ! falls to its minimum value /2 Whlle the modified
den31ty o attains to its maximum value

. Pmax= mang(O —4,\/2 5.92384 89151

‘Fig.1 shows curves ga(O)P/lcT versus the modifled density p, among
which the curve (1) is based on the uniform distribution, the curve (2)
on the crystalline distribution, the curve (3) on the interpolation dis-
tribution, and the curve (4) on the virial expansion®

o(0) - P/kT=p+%p2+ 35—2,03—1— 0.03580 o*-+0.00718 p° . 93)

Crosses represent the result
of Wainwright and Alder®, ex-
pressed in. terms of ¢(0)- PlkT
and p.

The curve (2) shows the ex-
istence of a phase change at p
"=3.26, to 3.94, (0)- P/kT=24.9
while the curve (3) does at p
=3.69 to 3.73, ¢(0)- P/kT=30.70.
The appearance of the phase
change is due to the existence of
two maxima in ¢ log z+F (cf.
(68)). In turn this is due to the
existence of a common tangent to
F(o). Fig. 2 shows the curves
(12.5-+1og ¢(0))p+¢(0)F based on
| I l the interpolation distribution (66)

r for m=40 and m=50. The curves

Fig. 1. are seen to have two peaks. The

F A
- PlOW/RT +
40—

+ Wainwright - Alder
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appearance of these peaks is traced back
to the behavior of 6 with respect to the
modified density p, as is shown in Fig.
3. At least, while other quantities vary 3070
fairly smoothly in the neighborhood of
the phase change, 6 shows its fairly
sharp peak there.

The substitution of w by N/Vz in (4)
Jeads to

X m =40
Ordinate = (12.5 +log (0) £ +POIF
T 9
a= _*<(br - b) >

ol o
30,69 57 o

where b, means the potential felt by a )
particle at the site r (cf. (12)). . Fig. 2.

Therefore a« measures the dispersion
of the potential due to a distribution.
For the umiform distribution a=0.
Likewise B measures the dispersion of
the potential in the presence of the
interference represented by the matrix
Q (cf. (26)). One can say safely that so
long as the distribution remains nearly
uniform a phase change néver occurs,
and that if a phase change should occur
it is likely to do in the range where 6 Fig. 3.
shows its peak.

Estimation of errors in the computation of B(s) is difficult, so
results on (12.5-+10g ©(0))o+¢(0)F are shown in. Fig. 2 for m=40 and
m=50. They disagree slightly in the range of phase change, but they
both show tne existence of a common taﬁgent, hence, of a phase change.

§7. Reflections

As to the pressure of the system of hard spheres, reliable data
are considered to be supplied by the virial expansion up to the vicinity
of the phase change, by Wainwright-Alder’s calculations there, by the
cell theory beyond there.

As is obviously shown in Fi_g. 1, the curve (2) based on the crystal-
line distribution rises too steeply and presents an earlier phase change,
while the curve (1) based on the uniform distribution rises too slowly
and shows no phase change.

Fig. 1 shows that the curve (3) based on the 1nterpolat1on distri-
bution coincides fairly good with the curve (4) based on the virial
expansion and shows a phase change in a region expected from
Wainwright-Alder’s computations. But the curve (3) diverges from
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Wainwright-Alder’s results as Well as the curve predlcted by the cell
theory beyond the region.

The defect seems to stem from the 1nterpolat1on d1str1but10n belng;
inappropriate at higher densities.

Improvement of the- present méthod " may be found in
1) setting up a better dlstrlbutlon and ‘

2) replacing W, by a more accurate, and yet integrable, functlon

An equation to the distribution might be established in the form
of an integral equation. To solve it would be another task.

A forthcoming paper will introduce a device to circumvent it.

To get a more accurate (W, one may augment the number of
planes S,. But the introduction of n planes leads to the introduction
of 2n variables v,, s, a=1,2, ..., n. After elimination of v,, one will
be faced with a task to seek an extremum with respect to n variableé
s,. So m should be small as far as possible. .

One may be tempted to use. other quadratic surfaces besides the
sphere. But it accompanies serious difficulties in integrals (22) and (26).

A few words must be added to explain the introduction of the sign
Extremum in (59).

The method of steepest descent should give a saddle point Wh1ch
is maximum with respect to real variables u, v, w and minimum with
respect to imaginary variables 7, s, ¢. In some situation, the coefficient
of v* in U, (cf. (32)), which is equal to L(8—a)/2, is positive, so that
the elimination of v gives not the maximum but the minimum. Con-
sequently one must seek the maximum with respect to s. It is

mystifying.

-~ In carrying out numerical computations with the Okiminitac of
the Ochanomizu University, the writer is. greatly indebted to Pr'of,
Hashitsume for his precious advice and help to whom the writer ex-
presses his hearty thanks. The writer thanks also Prof. Miyamoto
and Dr. Arikawa of Tokyo University for their encouragement and
support, Profs. Miyazima, Sawada and Soda of Tokyo University of
Education for their valuable advices.
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