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Formulas to express the mean value of a polynomial of degree up
to 5 over a tetrahedron by a linear combination of the wvalues of the
polynomial at the least set of points within the tetrahedron are es-
tablished and applied to a few functlons to estimate errors comprlsed

§ 1. Introduction .

There are several formulas for a line integral, for example,
Simpson’s, Gauss’, Tchebyschef’s and others. In space the shape of a
domain of integration may vary inﬁnitely.‘l If the domain of integra-
tion is a cube, a triple application of one of the above-mentioned
formulas may be useful. However if the domain of integration is a
polyhedron, there seems to be no formula for fairly general use.

As is well-known, a polyhedron can be divided into a set of sim-
plexes, that is, tetrahedrons.

Therefore an integral over a polyhedron may be represented by
the sum of integrals over constituent tetrahedrons. Hence it is funda-
mental to establish an approximate formula for an integral over a
tetrahedron.

Since a continuous function can be approximated by a polynomial
suitably chosen, we seek an exact integration formula for a polynomial
of degree up to 5.

A polynomial of degree 5 in three variables z, y and z has 143
+6+10+15+21=56 arbitrary coefficients. So it seems possible to get
a formula :

S Pdacdydé/ Kdocdydzr‘_i AP(%p Yir 24) | )

with suitably chosen weights A, and points (x, v, 2,), because the
number of weights and coordinates to be chosen is equal to (143)x 14
=56. This conjecture proves right in the following. The number of
chosen points cannot be less than 14.
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§2. Symmetrization
We take the origin of a coordinate system at a vertex of a tetra-
~ hedron and =z, y, z-axes-along the three. edges issuing from the vertex
S0 that we may have coordinates of four Vertlces
(000)(100),(010)and(001) ‘
A polynomial P of degree N may be represented as

P=1>" b, y™2" e ' (2)
l, m and » running from 0 to N while satisfying the condition [+m

+n<N. This representation, however, complicates the ensuing calcu-
lations, so we replace it by a more convenient representation

_ xl yk zl tm
e Y S s Ty | ©)

ht+k+l4+m=N, t=1—0x—y—=z.

In this representatmn P has the same number of arbitrary coef-
ficients as in the previous representation.

We denote the mean value of a quantity @ over the tetrahedron
by <@, or

@\ {( @uodyas/ |{{ dsyaz B
the domain of integration being the tetrahedron, or,

z, Y, 2>0, 1l—x—y— z>0

If Q is taken to ‘be x"y*2'(1—x—y—=2)", the use of a formula

wm

1 Sé’“wexs ds _ ] m! >0, ¢=>0

27??; G—ico Sm-H . (5)
0 <0

gives

S S S Qdxdydz = 5 S 8 xryFtrdedydz

= S S Sx“ykzl(l — & —y—2)"dwdydz

! o+ico * Poo .
=" S ds SSS xhytzles—T=v=2) drdydz
0

271 Jo—to gMT!
1 S"”"" ds es.h!k!l!m!_ hlE!L! m! (6)
271 Jo—ico g™ ghtk+i+3 (h+Ek+l+m+3)! ’

Setting of h= Ich_m 0 shows the second integral in (4) to be
1/31. Hence
111t m! 3!

7
(h+k+l+m+3)! ™
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and

Therefore any variable among four variables %, y, z and't plays
the same part. So we represent hereafter a point rather by (x, ¥, 2, t)
than by (®, ¥, &)

A pomt (a, B, 7 0) lies within the tetrahedron, When four coordi-
nates «, B8, r and 5 satisfy the following conditions

az=0, =0, r=0, 6=0 and a+B+r+o=1. (9)

If a point (a, B, r, 0) talls in a set of po1nts (%4 Yu 2 tp) to give
a formula o

<Q>:§ AQ(%y Yiy Zir i) | (10)

it seems probable that any point with four coordinates «, 8, 7 and o
in all possible orders may fall equally in the set of points. Points
with the same coordinates in a different order may be called conjugate
points. They are classified by the types as follows.

T 9(T) _ JS(T)
type number of conjugate points number of parameters
(a0, B, 7, 0) 24 4
(a, B, 75 7) 12 3
(@, @, 7, 7) 6 2 (11)
(o, B, B B) 4 2
(a, a, a, a) 1 1

The «, B, r and 6 here are assumed to differ one from another. It
is to be mnoted that while the condition a+pg+r+0d=1 reduces the
number of independent parameters assigned to a type by one, the
weight A assigned to the type increases it by one. The last type
(a, a, a, «) refers to the barycenter. '

The assumption that the right side expression in (10) consists of
terms taken at sets of conjugate points allows to regard Q(zx, ¥, z, t)
as a symmetric polynomial in %, y, # and ¢. Symmetric polynomials
may be expressed with s, s, s, and s, defined by the relation p*—s0*
+8,0°—8,0+8,=(0—2)(0—Y)(p—2)(p—1t) and s, is equal to 1, so that
symmetric polynomials may be expressed with s,, s, and s,

In the following, independent symmetric polynomials are listed for
degree N together with S(N) the number of independent symmetric
polynomials of degree up to N, C(N) the number of coefficients a,,,,
for h+-k+l+m=N and P(N) the number of points needed in the
formula (10) '
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N Symm. Polynom. S(N) C(N) P(N)
0 1 1. - 1 S
1 1 1 41
2 s, 2 0 . -3
3 S .. .. .. 3 20 5
4 8 s, 5 3 . 9
b 85 6 56 . 14
6 AT 9 84 21
7 828,, 8,8, - 11 120 30
8 sty s, 8,85 s .15 . . 165 - . 42
9 _8283, 84838 ss5 » v18 o 220 , 55

the P(N) bemg the minimum 1nteger not 1ess than C(N)/4

If the formula (10) prevails for polynomials of degree N, it should
do so for symmetric polynomials listed above of degree up to N.
Therefore the formula (10) must satisfy S(N) conditions, consequently
it must include S(N ) parameters. If points chosen in (10) are classified
by types T, the sum of 9(T), that is, the number of conJugate points
of type T, over types Ts, must be equal to P(N), and the sum of A(T),
that is, the number of parameters of type T, over types 7s, must be
equal to S(), or

PN)=39(T);,  SIN)=3SAT)

or in vector form

sl o w
S NUR

CE-e

S C RN

o[- g+l
T .‘(??)e(1§)+(_2)'+(é)+(é)+(E‘)

S N A R R R

o D e ) [+
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§3. Cases N=1,2,3,4 and 5 : :

For the case N=1, the mean wvalue of a polynomlal of degree 1is
expressed as the value of the polynomial at the barycenter of the
tetrahedron as is ee;sily' suspected and proved..

11 1 1 |
= YTy Ty T e 15
N4 Q4 44 4 o (12)
For the case N=2, the partition of (3,2) is not possible. However
the mean of a polynomial of ‘degree 2 can be expressed by the linear
combination of the wvalues of the polynomial at 4 barycenters of 4

faces and 6 midpoints of76 edges, or

1 1 1 ) 1 (1' 1 .
9 _7*7¥90"‘74 *,—,0,0 16
@, = 10 pZnQ(g 3.8 T meQ 2’ 9 )L (16)

each >) ranging over all possible permutations among four coordinates.
For the case N=3, we have the partition '

8-+ o

A , B 11
Q>= pZ:nQ(a, a, a, 1 —3a)+ Q T 1

and

The substitution of @ by s, s, and s, gives the conditions

)=1=A-4+B

3 3
<82>-—:W=4A(3a-—'—6a2)+3 3
()= —4A4(3a*—8a")+B. L
30 16
which determine A, B and «
A:: 9 s : B:——-i, a::l,
20 5 6
or
}_iil)_i(i}_i_{ 17
(@y= 205§mQ(6’6’6’2 5Q4’4’4’4' a7
‘For the case N=4, the partition
9\ (4| (4\ (1
5= (2)+(2)+ 3]
gives
<Q>1 A Qa, o, a, 1 3@)+BZQ(19 g, 8, 1—3B)
petm‘ perm
1 1 1
+C “"': Ty T Ty T e ' 18
Q 4 4 4 4 (18)
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The substitution of 1, s, s, s, and s} for Q leads to the equations

1=44 }-4B +C
<S2>_,,..;,,,6,,W4A(3a —6a’) +4B(38 —6ﬂ) +C- g

1 ,
== =4A(8a®—8a®) +4B +C. — 19
{8 30 | (3 8 ) 4 (gﬁ —8p%) 16 (19)

1 4 .
<s, >.——4~(.)~~—4A( a®—3at) +4B( g—3p" +C. _Z

13 9
D= =4ABa —6a’)’+4B(3f —68)’+C . —
=710 (3a —6a’)'+4B(3p —6F")+ T

The elimination of C, A and B gives two equations
S 126 af—21(a+pB)+5=0

598 1 { 1—-68 4 6a—1
21 Bl (1—4a) (1—4B)
from which is derived the equation to =21 af

536 ©*—1268 x+599=0.

In turn, it gives

a=0.33045 72443 , £=0.09398 38416 _ (20)
and

A =0.14837 78971, B=10.08392 36899, C=0.05079 36508 .
For the case N=5, the partition

Ul =) lel 4 o

gives
<Q5>:A EQ(C{) a, a, 1——3&)——}—32 Q(ﬁy ‘8! ‘8) 1_818)
Y 1 . 1
+(,p2>;_r,nQ(r, T r). (21)

The substitution of 1, s,, s s, 8,5, and s, for @ gives 6 equations

2 + Y —840
A(3a —6a’) + (38 —6) »w(%rzc) — 252
(3a —6a’)’ +p(38 — 68 v| 5 +20)0 =78

A(3a2— 6a?) + (382 —6Y) +ve =28 (22
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(B —6a) (30— 8%) + (B — GBI 388" 4T+ 20) 00

A o —3at) u( fF38Y e =1

where 1=840x4A, p=840x4B and v==840x6C.
The elimination of v and ¢ leads to =~

E°A+n*u=>56

E0+ =140 |

Ex+ 7' p=24 ST (23)

9(168 — &% —7’u)*=96(840—1—p)
where §=1—4a and y=1—48. The first and second equations give the
relations " | ' ‘ ‘

T 567 —40 . 56& —40

£ (—¢) 7E—-n

which yield, by way of the third equation,

TEn—bH(E+7)+3=0.

In terms of unknowns &yp=gq and §-+7=p, one gets

T7q—bp+3=0
and

2 - . 9 :
9 168—M)=96(840—.56p(p 2)—40('—q) |
q | ¢

The elimination of p leads to the equation
259¢° +273¢°—239—9=0.

Final results are as follows. .
a=0.09273 52503 2=246.93663 50 A=0.07349 30431
B=0.31088 59192 p=378.63143 48 B=0.11268 79270 (24)

7r=0.45449 62795 V=241.43194 02 C=0.04254 60199

§4. Comparison with a crude formula

A crude formula may be to replace the mean value of a function
g(r) by the average of the values of g(r) at four vertices of the tetra-
hedron. The division of the tetrahedron into m?® tetrahedrons formed
with four sets of equidistant planes parallel to four faces of the
tetrahedron and the replacement of the mean value of g(r) in each of
m?® tetrahedrons by the average of values of g(r) at four vertices of
each tetrahedron give a formula .

GaEp=1jm Twees o (25)

where s ranges over lattice points
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8= (t/m, j[m, k|m)

?:y jy k':O; 1! 2: ttty

1+j+rkE<Zm

G. IwaTa-

m

andTthe weight w(s) is equal to

1/4 when s is at a vertex,
7/6 when s is on an edge,
3 when s is on a face,
6 when s is inside,
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of ;the tetrahedron. This formula is exact when the function g(r) is

continuous and linear in each of m® tetrahedrons.

Comparison of the formulas (15), (16), (17), (18), (21) with (25) for
m=1, 2, 3, 4,5 is given below in connection with three functions e,

1/(1+x) and 1/(1+a?).

For Q@=e¢7* the mean value of @ turns out to be

{Qy=3(1—2/e)=0.79272 33

and approximate values are

(@, =0.77880 08
(@,=0.79691 86
(@,=0.79264 85
(Q,=0.79275 62
(@>,=0.79272 30

For Q=1/(1+x),

(25),=0.84196
(25),=0.80810
(25),=0.79988
(25),=0.79677
(25),=0.79533

(@Q>=3(4log 2—2.5)=0.81776 61

(@=0.8

(@, =0.825
(Q),=0.81714 28
(Q,=0.81792 70
(@>,=0.81775 66

For Q=1/(1+2?,

(25),=0.875

(25), = 0.83854
(25),=0.82777
(25),= 0.82356
(25),=10.82153

(Q>=3(1—1log 2)=0.92055 84

(@), =0.94117 64
- {Q),=0.91
" {Qy;=0.92057 24

{Qy,=0.92059 03

(@5, =0.92052 77

 (25),=0.875
(25),=0.89687
(25),=0.90918
. (25),=0.91402
. (25),=0.91633

76

31
02
97

60 .

16
7

76
17.

50
80
11
46

{Q); is obtained from the values of the fﬁﬁétioﬁ épt 14 .poin'its,.vwherea‘s
(25), is obtained from the values of the function'at 56 points. The
formulas (@), are far more accurate than the formula .(25). . Errors
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committed by formula (@), may be estimated as

3M

e <
|error | (m+1) L m D)

with the aid of Taylor’s theorem, where M denotes the maximum

value of
o) oy 1 @ v

y . i+ k=m+1

over the tetrahedron.

For a function that shows abrupt jumps, M=oc. So formulas
{Q>, might yield poorer results than the formula (25) where domains of
abrupt changes will be diminished with increasing m. For @=¢(1/2—2x),
where e(®)=0 for >0 and e(x)=0 for x<C0, comparison is as follows

(Q>=0.875

(@, =1 (25),=0.75
(Q,=0.85 (25),=0.75
(@5,=0.775 (25),=0.86111 11
(Q>,=0.91107 63 (25),=0.84375
(Q5,=0.79886 86 (25),=0.87

In conclusion one may say that formulas <@, are far superior to
formula (25) for a smooth function whereas the latter is preferable to
the former for applying to functions that show abrupt jumps.



