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Spaces are determined such that they satisfy Einstein's field
equations for empty spaces with or without cosmological terms and
that the equation of geodesic there is integrable by separation of
variables. A new space with cosmological terms is obtained which
may be represented as the intersection of two cylindrical surfaces in
a six dimensional euclidian space.

§1. Introduction

Several solutions of Einstein’s field equations for empty spaces
have been obtained by Schwarzschild,” KXasner,” Tolman,” Chou,®
Wyman,” Nariai,” and others, under the assumption of some sym-
metric properties for the line element. It is an idea to determine
canonical forms of the line element of the empty space for which the
Hamilton-Jacobi equation of a geodesic is integrable by separation of
variables and to solve Einstein’s field equations for empty spaces with
the canonical forms thus determined. In §2, §3, §4 are determined
the canonical forms, in § 5 empty spaces without cosmological terms,
in §6 empty spaces with cosmological terms, which are shown to be
reducible to 4 spaces by change of coordinates in §7. Only one new
space with cosmological terms is obtained, which may be represented
as the intersection of two cylindrical surfaces in a six dimensional
euclidian space.

§2. Fundamental equations

If we assume the line element of a space to be ds*=>) hdx?
(i=1, 2, 8, 4), the condition of Levi-Civita for separability gives two sets
of equations
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1, 9, k==
where 2,=1/2 - logh, and the mnotation 4,7, k2= means that any two
among 1,7, k are not equal.

The conditions for the space to be empty are grouped into two
sets of equations by virtue of (1), (2)

2 .
Ry=— 1 OAtl) oy, z:}: (3)
2 0w, 0%,
0%, 04 \* o 04 \* |
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A being a cosmological constant.

By the way, the conditions for the space to be flat are grouped
into two sets of equations
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3 sets of equations (1), (2), (5) determine 18 canonical forms of the
h's glven in a previous paper®. Canonical forms of the k’s for empty
spaces are to be determined by (1), (2), (3).

A general solut1on to (1), (2) is, as has been obtained by Staeckel,

Ch=d]4,,  i=1,2,3,4

‘ a/l(ml) 0’2(932) a’3(x3) a’/i(wé)
bl(xl) bZ(xZ) b3(x3) b4(m4)
4= ~ - o | (7)
cf®) %) cyf®y) ey | |

dyz) dyw) dyz) dyz) |

A,=cofactor of a;, in 4

N N )+ 3_,( Lk
9

_ax]” «/h 890 5@

a(x,), bx,), c(x), di(x;,) being dependent on only =z, for any 4. Hence
we have ' '

22,=log 4—log A,, 1=1, 2, 3, 4.
Putting
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2log 4—2]log Ai=S (3)
we have the conditions to be satisfied by S from (3)
0°S
— = =0, k==l 9
02,0, , - : . ©)

because of the relation
2(2;+4;)=21log 4—1log A;—log A;
=S-+log A,+log A4,, 1,9, k, I==

A, A, being independent of =z, z, respecti'vely.
Hence we get

S=>]logs, : (10)

s;, being any function of x, only. Multiplying elements of the ¢-th
column of 4 by s, we can reduce S to nothing. So we can assume
S=0 or

2log 4=72]log A, or LIr=AA,4A, (11)

and set out to obtain canonical forms of the h’s which are now to be
determined by (11).

§ 3. Soluions of the eguation (11)

To solve the functional equation (11) is a toilsome task. Since
solutions to (11) are ramified into numerous degenerate cases, here
is'presented only a mon-degenerated case.

' We assume d,, d,, d,, d, in 4 not to be zero and multiply each
element of the i-th column of the determinant 4 by 1/d, and change
the variables so as to get d,dx?=dx'’.

- We have then

a/ a) a' a/
’ b/ b/ b/ b/ : : s
d=dddd, , A =ddd, ¢/ ¢’ ¢/ |, ete.

/ / 14 /!
cl CZ C3 64

1 1 1 1
and put
d=dddda, A=dddA/, etc.

where a/=a;/d, etc.
The equation (11) becomes then
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A?=ddddAAJASA/
and
h,=d;h, , hi=4"[A] .

By the change of variables, 2/ may be regarded as h;, in a new
coordinate so that 4, A, may be replaced by &4/, A/ respectively. Hence
we can assume from the start

1 1 1 1

and seek a solution to
LP=AAAA,.
From a theorem on the determinant we have
(¢,—c,)d=A,B,—A,B,
B,, B, being cofactors of b, b, in 4. Hence we have

( B, B, )2:(0 ) AA,
4, A, Y AA,

For a moment we consider w, x,=constants and x, x,=variables.
This equation (12) is then of the form

(91—"92)2 :f1f2(7'1”'r2)(31_32) ‘ (13)

9; fi 75 S; being functions of wx,, since A,, B, and 4,, B, are independent
of z, and of x, respectively. A general solution to (13) is for g/g,/0

(12)

I

1 po +p0, , 1 — pO +p0’ N
9,—9, =7 9,9, Ty—"
(14)
1 ) +q,, 1 -9 +q J
$;—S8 "7 S8, Ty—7,

where g,, 7, Sy Py D5 9 9, are any constants independent of z, w,.
Comparing (13) with (12), we may put

b1’_b3 ba_ba — bl—b4

r=—, ry=— §=——>=, §,= (15)
¢, —¢, C,—Cy ¢, —¢, ¢,—C,
and get the following relations
1 Dsg
= + s,
b,—b, S, b,—b, —7y, (16)

6,—C ¢ —C
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1 - Py 4y, (16)
bz"‘b4 —8,, bz‘_bs —_
Cy—C4 Co—Cy "

Dy Qo T3 S, being some functions of «,, ., We can rearrange the
first equation of (15) as
“(bl ”—bs)(bl "“b4,) =+ ﬁ(bl _bs)(c1 - 04) + 7(b1_b4)(c1 - 63)
+5(01"Cs)(c1—c4>=0 (17)
where «, B, 7, 6 are some functions of =z, x, If we put x,=const,

x,=const, we see that the point (b, ¢,) lies on a certain quadratic
curve

hb*+kbc,+le?+pb,+qc,-+r=0, h,k,1,..-=const. (18)

Because the two equations (16) and (17) are to be compatible, we
have the following relations for any values of x, z,

a=ho, B+r=ko, d=la, )

—a(b,+b,)~ pe,—rec,=po
> (19)
—0(¢;+¢,)— Bby—1b,=qo

abb,+ pb,c,+1dc,+dcc,=r0

o being some function of «, x,.
Eliminating «, 7, 6 from (19), we have

o{p+h(b,+b,)+ke,}=p(c,—c,)
o{q-+U(c, +¢,)+ b} = B(b,—b,) | (20)
o{r—hbb,—kb,c,—le,c,} = B(bye,—b,c;)
Eliminating p/o from the first and the second, we have
hb? +kb,c,-+le,’ + pb,+qe,=hb * + kb c,+ e, +pb,+qc, .

The left member is independent of x, and the right member is
independent of x,. Hence both members are equal to a constant, say
t. Multiplying the first of (20) by b, the second by ¢, the third by 1
and adding them, we have t=—r so that every point (b, ¢,) 1=1, 2,
3, 4 lies on the same curve

hb? +kb.c;+le +pb;+-qe, +r=0 (21)

Therefore we can express b, ¢, as rational functions of a certain
function u, of «,
b.: a/lui2+bllui+cll ’ 0 — alui2+blui+cl

aul+bu,+c ’ aul +bu,+c

so we have
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A;=D - A(w) - (au®+bu;+c) « TT (w;—u,)/I1 (au,*+bu;+-c)
ki : j=1

u® oy '“;33 u

D=|a o ¢ |, Auw= | (22)

4= D*A(w)|TI (au,’ +bu, +c)3/?
k

But, if we put -
,gl"_fB_z/Azgr ,g?.:»BI/Al

in the solution of (13), we see that a, is' a rational function of b, ¢,.
Therefore 4 must be rational in wu, so. au+bu,+c¢ must be a perfect
square. Hence we can put

b=a"ul+b"u,+c", a=b=0
c,=adul+bu,+c, c=1

regarding a rational function of the old u, as a neW Uy
We have then

A=D - Aw)[TL () (23)

hi=D - TI (u;—uy,) .

k==t

This form of the A;s is nothing but the canonical form (R) in flat
spaces except for an irrelevant numerical factor D.

In scanning each of degenerate cases where some factors vanish,
we have the same 18 canonical forms in empty spaces as those in flat
spaces. This result might be reached by a shorter approach.

§4. 18 Canonical forms
(Y  h=poz,, h=p, h=0,, h=rt,
(B) h,=0't,, h,=0,0,, hy=0,0,, k=1,
©) hy=¢?, h,=o007,, hy=0,0,, h=07,
(D)  h=0,—0,, hy=0,~0,, hy=1, h=1
(E) hi=06(0,—0)), h,=0,0,—0), hy=00,, h=1
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{F) . hls'al(01+1)(01_02) ’ h2=02(02+1)(02——01) )
'h3:01‘72 , h4: (0,+1)(0,+1)

G)  h=0?, hy=002, hy=0,00,, h=000,
H)  h=olz, h=0(0,—0), h=0(0,—0), h=r,
@ =00, h=0,—0,, M=o, h=0,
() hi=0X0,—0,), hy=0(0,—0,), hy=0,0,0,, h=00,0,
(K) h=0?, hy,=0,0(0,—0,), h,=0000,~0,), h,=0,0,0,
L) h=(o,—0)o,—0), h=(0,~0)(o,—a),
hy=(0,—0)(o,—0,), h,=1 |
(M) hy=o(o,—0)(6,—0,), h,=0(c,—0)(o,—0,),
hy=0,0,—0,)(6,—0,), h,=0,0,0,
(N)  m=0,—0,, hy=0,—0,, h=0,—0,, h=0,—0,
(0) h,=0¢?, h,=0,07, h=0,00,—0,), h=0,0(c,—0,)
(P) h=0Xo,—~0,), hy=0(0,—0,), hy=0,000,—0,), h,=0,000,—0,)
Q) h,=o0(0;—0,)(0;—0y), h,=0?, J, k==1
R)  hy=(o,—0)(0i—0)oi—a), 47,k =

§5. Empty spaces without cosmological terms

The ks put in canonical forms are to be determined by (16) for
flat spaces, by (4) for empty spaces without cosmological terms. It is
a disappointment to find that the h&/s for empty spaces with 4=0
coincide with the i’s for flat spaces in almost all cases. The difference
is found omly in cases (A), (B), (H). ,

We show at first the above coincidence with the case (R) of cano-
nical form, where the »’s have the following form

hi=T1I (0,—0,), 1=1,2 34.
L .

Inserting these expressions in (6) for 1=1, j=2, we have for a flat
Space

(01_03)(01_ 0'4) {20'2" _‘0'2,2(-—‘2 + 1—~+—1—> }
Oy— 0 1

03— 0, Oy— s
+(U2—‘73)(02_‘74){2‘71”_0'1/2( 2 + 1 + ! ) ‘ (24)

0,—0y ~ 0;—0g" 01— 04

(01_‘02)2(01“'0—4)(0'2“‘74) a2 (0-1_"0'2)2(0'1—‘0'3)(0'5_‘73) g /2=0 '
(0,—03)(0,—~0,)(0,—0) ’ (6,—0)o,—0,)(0,—0,)
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where o/=do,/dx, etc. Putting « =constant, z,=constant, x,=constant,
we see that ¢/* is a polynomial of degree 4 in o,, So we can put
c’=ap0+a0l+a0l+a0,+a,. (25)

We see quite similarly that ¢/% ¢,/% o/ are also polynomials of”
degree 4 in ¢,, g, o, respectively. Inserting these expressions into-
(24), we find that the above 4 polynomials have the same coefficients,.
that is,

o?=a,0 '+ a0’ +a,0’+a,0,+a, 1=1, 2, 3, 4. (26)

If we insert (26) into (4) with A=0 for 1=1, we have for an empty
space without cosmological terms

2R, = ( 1 -+ 1 -+ 1 )01”

o,—0, o,— 0oy, G, —0,
_ ( 1 1 4 1 1
(6,—0,)* (0,—0,)" ('0'1_0'4)2 (0,—0,)(0,—0y)
1 r2

N (6,—a)(0,—07) N (0,— ”3)(01 o) )01

. (6,—0,)(0,~0) ( a,’ )
(0;,—0,)(0,—0) 0y— 0y “0'1)2

_ (o,—0)(0,—0) ( o’ )
A (0,—0y)(0,—0,) \ 0;—0, _01)2

. (0,—0,)(0,—a}) ( 0'4”

{o,—0,)(0,—0)) (0' '—01)

To eliminate ¢,/ we form an expression

2R11(g2—04)+2R22(01_“74):O-3/2 (Q'1~02)2(01—04)(02~0.4) +F(oy)
(05— 0N 05—0,)(0,—0,)
where (o,)(0,—0,)(0;,—0,)(0,—0,)* is a polynomial of degree 5 in o,.-
Hence we see that ¢/? is a polynomial of degree 5 in ¢, and quite-
similarly that ¢/?, ¢/% ¢/ are polynomials of degree 5 in o, o, o,.
respectively.

- Replacing ¢/ in R, by respective polynomials, we find the same
result (26) to our disappointment. Empty, not flat spaces appear only-
in 8 canonical forms (A), (B), (H).

(A) In this case we have the Kasner solution a little generalized_

ds’=dx?+x2dx? +x Pde, +x de,’
«, B, r being constants subjected to the conditions

a+pB+r=1, a2+'ﬁ2+r2$1.
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(B) In this case wa have the Schwarzschild solution in a spheri-
cal coordinate

do,

ds?=__""1
? 1—c¢/o,

2(dx, +sin*x dx,”) -+ (1— ¢ )dxf
g, !
(H) In this case we have the same Schwarzschlld solution in
another coordinate

ds? — dUZ 2 da? —drx.? _ ¢ dax 2
§'= L 40 (P(%,) — p(x,))(d,’ —da®) + |1 Ly
l—c / g, 9y

prl=4p*—gh—g,, g, 9,: arbitrary.

§ 6. Empty spaces with cosmological terms

Solutions of Einstein’s gravitational field equations with cosmo-
logical terms, R, =Ag, are obtained in terms of elementary, elliptic
and hyperelliptic functions with the above canonical forms except for
(D), (E), (L), (Q). With the canonical forms (D), (E), (L), a component
of curvature R, vanishes identically.

With the canonical form (Q), we have a rélation

R,|h,=f(o, 0, 0))Jo,=A,  f=some function of ¢, o, o,

whence we deduce o,=const., so that this case reduces to the case (L).
For other cases solutions are listed as follows. Since the calculations
are straightforward and tedius they are omitted.

(A) ds’=(1—38A4x?2/4)"dx >+ (1 —3Ax 2 [4) "2/ (x 22dwx,’ +x *da? +x 7dx ?)
a+B+1=1, a+p+r’=1.

(B) d32:(1_ ; _ ;1 x12)‘1dx12 e+ )
1

! _ixlz
Xy

+ (1 — dx,? Schwarzschild’s solution

©) ds®=(1—Ar*[3)~'dr® + r’(du,? + sin*udu,’ + cos’u,du,’)
de Sitter’s solution
(F) ds’=3[A - (p(u,) —p(uy))(du,® —du,’) + (p(u,) —e,)(p(u,) —e,)di’
' + (p(u,) —e,)(p(u,) —e,)dx,’
g,=4(3e2—3e,+1), g,=4e(20,—1)(1—e), e,—e,—1

where p(u) is the Weierstrass’ elliptic function defined by the differ-
ential equation

pA(w) = 4p*(w) — g, p(w) — g,
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(G)y - ds,=3/4 Q"{duﬁ+sin—h2ul(duf—1—sin”uz(duf—|-—”sin2u3du42))}v ~(C)

this is equivalent to (C).

2 l A 2’_1 9 | Az 2 l
(H) ds’={1— ———x? de’+a’d3+|1—
: Ly 3 X,

A5 = (pey) — D) da — )

— g z?lde? ~(B)

pr=4p’—g,p—g,, g, 9,: arbitrary
@) dszzl}A C(d32+ds ) |
43 =(p(z,) —p(@,)(de’ —dz?), dI’=sinh s, - (dz,?+dw.?)
(J)  ds?=3[4 - (p(w) —p(w,))(dw’ —duy’) + () +D(p(uy) + 2" ~(Cy
l, 9,, g, arbitrary
d3r= sinﬁ‘2w3(dx32 +dx2)

(K)  ds’=(Au?[3~1)"'du? +ul{(p(u,) — p(u,))(du,? —du,?)

+ (P(u,) + D) (p(w,) -+ du,’} _ ~(C)
o (0,—0,)(0,—0y) 4 (0,—0,)(0,—0,) 2
b de= 0,f(0,) doi iy
-+ ’(‘73—;:}((';2)—‘72) »do32+610203d042 | ~(C)
f(o)=44[3 - 6"+ 2ka*+4lo +4m
(N)  ds=1/d. (d32+dZ?) : (1)

A3 =(p(,) —p(x,))(dw,* —di,?)
d‘gz2 = (p(xs) - p(ac4))(d.')c32 - dmf) '
P(wg) = 4P* (@) — 9.9(%) — g5 » 1=1, 2, g, g,: arbitrary

px)=4p%(x) —g,/p(x)—9 ., =3, 4, g/, g/ arbitrary
(0) ds?=3/4 - {du,’+sin’udu,’ + sin’u, sin*u,dw’} ~(Cy

_ » do’ = (p(ug) — p(u4))(du32 ___d%42)
(P)  ds?=38[4 - (p(uy) —P(u))(dw? —du,?) + (p(u,) +1)(P(ty) +)deo?

daﬂ:(p(u3)—p(u4))(du32—du42) ~(J) ~(G)
(R) d82=§(0i—aj)(ai——ak)(oi—al)doiz/f(oi) i 4, I, L= ~(C)

f(0)=240"+a,0* +0,0° + a0’ +ao+a;  a; arbitrary

(Q) d82=_—0422(0i—0j)(0'i~0,6)d90i2+042d9042 1,9, k== ~(Cy
2—1
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§ 7. Use of sphero-conical coordinates

It is a further disappointment to find that out of the above 15
solutions survive omnly 4 solutions (A), (B), (C), (I), for other solutions
are reducible to them by change of variables. The type (A) corre-
sponds to the type (A) in §6. The type (B) gives the Schwarzschild’s
exterior solution. The type (C) gives the lines.element of the de Sitter
space, which may be represented as a spherical surface in a euclidian
space of dimension 5. The types (F), (G), (J), (K), (M), (0), (P), (Q)
and (R) also may be interpreted to represent the spherical surface, as
will be shown later. The types (I) and (N) are interpreted as the
intersection of two cylindrical surfaces x2+ x>+ x,2=const, &#2+x2+2x2
=const in a euclidian space of dimension 6.

In order to make clear the equivalence of several spaces to a de
Sitter space we make use of a coordinate system which is akin to a
confocal coordinate system and may be called sphero-conical coordinate
system. Let z? 4+, +..-+a,2=p® be a sphere in a euclidian space of

dimension n. Let p,, 0, -+, 0,_, be n—1 zeros of an equation
x,? x, x,? . :
1+ e =p 0 =>0,=> - >a,>0
afl—"p a’g'—p Up—p

such that the p, be between a,,, and a;. Then we have an identity

xlz. A oeee ‘90n2 — 2 (p—pl)-"(p——pn_l) .
a,—p a0 (o—a,) - (r—a,)

Putting p=a,; after multiplying both members by a;—p, we have
n—1 .
w? = II (a;—p;)/ 11 (a;—ay) 1=1, 2, -+, m.
=1 PE

Hence the coordinates #,, x,, ---, «, are expressible with g, o, -+, p,_,
though the correspondence is not uniformized. The uniformization is
attained by a method similar to that used in a confocal coordinate

system. The coordinate system g, o, ---, 0,, 18 an orthogonal curvi-
linear one. Imn this coordinate system, we have

n—1
ds*=3) du=dy+ 12231 G oo [4e(o,)

where ¢(p) stands for the product (o—a,) --- (0—a,). The derivation of

the expression ds* is similar to that in a confocal coordinate system.
Put n=5, y?=—4/4 and one gets the line element of the spherical

surface x2+x24x2+x2+22=—4/4 in a euclidian space of dimension 5

5= 33 (01— 00— 00) 01— P07 ()

Flo)=24 H (o—ay)



30 G. IwaTa NSR. 0.U., Vol. 20

which reduces to ‘the line element in (R).
Let a,=a,, put

2 2
x4+,

x2 4 X, 4 x,? .
a,—p0 . G—p &y— 0 a,—p
e (e—p)(0—p,)(0—p)
(o—a)(p—a,))(p—ay)(o—a,)
x. xz2 2 2 o—p
+ = — (2] + ;%) 4
by—p.  b—p T (e—=b)(e—b,)

and one gets the line element of the spherical surface in terms of 4
variables p,, 0, 05 p,, This line element reduces to the line element
in (M).

Let a,=a, a,=a,; put

@, + .2+ 2 + xl4-a 2 (0—p,)(0—0,)
a—0 Gy—p d—0 (o—a)(o—a,)(p—a,)
x,? + N — (%, 4 25°) (0 — 05)
b,—p by—p (0—b,)(0—by)
L2 + L5’ — (®l+2)(0—0,)
b—o0 bs—p (o—b,)(0—by)

b, being constants, and one gets the line element of the spherical
surface that reduces to the line element in (F).

Repeating the same procedure as above, one gets the line elements
in (C), (G), (J), (K), (0), (P), (Q). In these cases, the solutions represent
the line element of the same spherical surface in different coordinate
systems.

Therefore empty spaces of Staeckel with cosmological terms are
only four in number.
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