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Inclusive of well-known potentials, parabolic and Morse potentials,
potentials for which Schroedinger equations are soluble in terms of
confluent hypergeometric functions are determined together with their
eigenvalues and eigenfunctions. '

§1. The condition of solubility

There are some types of potential, for which the Schroedinger
equations are soluble in terms of confluent hypergeometric functions,
such as, a parabolic potential, a Teller-Poeschel potential® and a Morse
potential.’ In any of these potentials, the Schroedinger equation of a
particle is reducible to a confluent hypergeometric equation, yielding
eigenvalues linear or quadratic in a quantum number. If the question
is reversed, one may be led to a problem to find out other potentials
for which the Schroedinger equations are analytically soluble in terms
of confluent hypergeometric functions or hypergeéometric functions. In
the present paper, only confluent hypergeometric functions are kept in
sight. We set the Schroedinger equation for a particle of mass m
moving in a potential field U(x) as
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or in its reduced form
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where e=2mE/h? V(x)=2mU(x)/h"
We seek the conditions that the equation (2) should be reduced to
a confluent hypergeometric equation
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by the change of variables,

p@)y=wt)g(®),  flz)=t (4)

under the following assumptions
A) the parameter a is arbitrary,

B) both the potential V(z) and the function f(x) are independent
of the parameter a, and '

C) the parameter ¢ as well as the function g(x) may depend on the
parameter «a.

The change of variables (4) gives

A () o+ ()’
dx

_%f_zwll(t)fl2g+wl(t)(fﬁg+ 2flgl)+w(t)gll

and turns the equation (2) into the following equation
S () + (f"9+2f'9"yw'(t) +[g" + (e — V)glw(t)=0

which is to be identical to the equation (3) except for a multiplication
factor. Hence we have

(f"9+219") 9= (c—I)f (5)
9"+ (e—V)g)[f"*g= —alf . (6)
The equation (5) may be rewritten as
g 1 (d g S
PR

which may be integrated to give

(7

log 9= —;—(c log f—f—1log f’)+const.

or
g=const. [~ 72|/ f . (8)
The equation (6) may be rewritten as

Vi(z)—e= g;' + “J;z = -‘;’ [+ { Z’ |+ “;'2 .

The elimination of ¢’/g by way of (7) leads to
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Our task is to determine V(x) and f(x) from this equation (9) by
virtue of the preceding assumptions A), B), C).
It is to be mnoted that the wave function ¢(x) is given as

¢(x)=const. f2e 721712 F(a, ¢, f(x)), (10)

since the solution of the confluent hype’rgeometric equation is given
by Fi(a, ¢, t) and g(x) is given by (8).
For the sake of simplicity, we put

V(e)—e=R(z)+ Q)+ -5 P(@)+aS() (11)
where o
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P=tes =Ll R (f f,)+4(+f,),
and o

S=rrlf. (12)

According as S’ is zero or not, the path forward is divided.
In §2, we take the case where S'=0, and in §3 the case where

S'==0.

§2. Case 1
When S is zero, S is a constant, so one may put
Frif =4k
then one gets
FIVF=2k or  fe(kny. a3)
Hence one has '
V(m)—e:lcz[(lcoo)2+ | (k‘i)z ]
where
=
Therefore one gets immediately
V(x)=Fk[(kx)*+d(kx)™"] . : (15)
and
=k*2c—4a) .

The potential is to be independent of the parameter a, so that d,
hence ¢, is a constant independent of the parameter a.

The case d=0 gives a well-known parabolic potential. For the
potential to be a sort of well, d must be non- negatlve

For d >0, the relation (14) gives
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c=1+\/d+— or c:l—\/d —_—
4 o + 4

while, for thé\ wave function

¢(aa)—const o~ (k) ”xc l‘/ZF(ar, ¢, k) (16)

4,7

to be finite over the rancre ocz() of the variable %, one has the follow-
ing conditions

c=>1/2 at 2= 0

and a=0 or negative 1nteger at x=c0. Therefore one has
1
C:l—]—\/d—k___q
‘ 4
and
=k 2+A/4+d —4a) a=0, —1, —2,.... a7y

The number of discrete energy levels is infinite.

§3. Case 2

When & is not zero identically, one sees that for a particular
value of z, there must be a relation

c? ¢
‘ 4 - 2 Pt (18)

a, B, r being constants independent of ¢. In other words, a must be
quadratic in ¢. Since V(z) is independent of ¢, and e is independent
of x, the expression

V(z)—e=c(P+ aS)/4+c(Q+‘,‘BS)/2+R+rS , (19)

must satisfy the condition

-5—3—(V(90) €)=c(P+aSy[2+(Q+BS)[2=0 (20)

for any value of # or ¢. Hence
(P+aS)y =0 or (I +af)f"?/f*=const.
(R+pSY=0 or [1-++(1—23)f1/"?f*=const.
For’ these two relations to be compatible, one is lead to get
feloa. (21)
One may set then.

A+af)frlf= 410"‘
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or
Sivaf f1]f =2k, E>0. (22)

The change of dependent variable from f to 6 by af=6*—1 gives
the equation

0 =k(0*—1)/0° y _ (23)
which is integrated to give
1 6—-1 -
+-—1o =kx . 24
5 fpi1 (24)

One sees then that t—co a8 — L o0 and £— —co a8 §—1+.
So the whole range of %, —co << oo, corresponds to the range of
8,0 >1. One gets further

6* 3 1 4r 1
Vix —e:k{——_ (_ — )
@) . al * 4 + a’ «a 6*
3 1 5 1 9 4r 2 J
+— =2 ————— | .
2 ¢ 4 @8 a a?

Instead of a, ¢ is to be regarded as a parameter here. Since one
may add additive constant terms to the potential, one may put

6° 3 1 4r 1
Vix :kz[ (__ﬁ_“h* -
(@) o’ + 4 | o’ « 6?
3 1 5 1 47 2 } ,
b2 2 1 25) -
2 6 4 68 a o’ (25)
e=—k¥(c—1)*. ' 0 (26)
As is seen,
G — -+ co as 2L — -+ co

so that the convergence of the wave function for x—oo requires that
a>0 and a be 0 or a negative integer. Further one sees that

0 ~1 4 2¢2k2=D and f~4e2*==D [ as T — — oo

so that ¢ ~f2f/~2~exp[(c—1)(kx—1)], therefore the convergence of the
wave function for #— —oo requires ¢—1>0.
Since f=1—a by (21), a is expressed as a polynomial of degree 2
in ¢
a=ac’fd+(1—a)e/2+71 . (27)

Hence one gets

c=a—1-+/{la—1y—da(r—ay | (28)

with the restriction that
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a=0, —1, —2, —3, ...
c>1
(a—1Y—4da(r —a)=0.

The number of discrete energy levels is finite.
Finally we show that the limiting case a=0 gives a Morse poten-
tial. In this case, we have from (22)

ff=2k
so that we get
S=Ae*", A =const.
and
V(x)—e=Kk[A%* +4r Ae?®* 4 (¢ —1)"].
Therefore we may get
Vi(x) = k[ A’e**= 4- 4y Ae?*™]
e=—kc—1)°= —Kk*2a— 2r — 1)
a=0, —1, —2, ...,
Summing up, we obtained two new potentials (15) and (25) for
which the Schroedinger equations are analytically soluble in terms of
confluent hypergeometric functions.

It is fo be added that the confluent hypergeometric function of
Whittaker W#® that satisfies the differential equation

2 2
¢W (1, k  1i-m

i W=0
da? 4 x x?

gives the Coulomb potential plus a repulsive potential proportional to
the inverse square of the distance.
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