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1. We shall be concerned with the following problem in this paper.

PROBLEM. . Let D be a domain in the Euclidean plane R, K a non-
empty connected subset of D, and f(x,y) a real-valued function defined and
continuously differentiable on D.

Consider the tangent planes to the surface z=f(x, y) at those surface-
points whose orthogonal projections on the xy-plane belong to the set-K. If
these tamgent planes .are all perpendicular to the z-axis, them they are
identical. : :

This problem can be solved affirmatively in two cases (Theorems 1
and 2) in each of which K is a continuous curve fulfilling a certain
condition. The second theorem is an extension of the first.

 Before dealing with them, we shall examine the problem and intro-
duce notation and some definitions. v

Suppose (a,b)y&= D. and write f(a,b)=c. The tangent plane at the

surface-point (a, b, ¢) exists and is expressed by

z—c=f,(a, b)(x —a)+f(a, b)(y—b),

since f is contmuously dlﬂ’erentlable This plane is perpendicular to
the z-axis if and only if f(a b) =f,(a,0)=0, in which case its equation
reduces to the form z=c. We can therefore replace the hypothesis of
the problem by the condition that f(x Y)=rfy(%, ¥)=0 at all the points
(9c Y) of K, and the conclusmn by 1dent10a1 constancy of f(ac y¥) on K.

2. In the rest of this paper, the term ¢ function ” will always
mean a finite real-valued one, unless another meanlng is 1mp11ed by the
context.

, NOTATION. Given a palr of functions p(x), v(x) deﬁned on the real
line R, and given a set Ec R, we shall write “ u<v on E if to each
point of E there correspond positive numbers ¢ and M such that the
1nequa11ty 0<h<5 implies

| (@ +h)—p@) | < M|v(z +h)—V(00)I

In particular, « p<<v on R,” will simply be erttenp<u
In the above deﬁn1t10n replace “0<<h<0” by “0<h<<é and
x-+hc E»; then we shall write p<mw.
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CONVENTION.
+oo (0<<a<<+ o)

%: 0 (a=0)
—oo (0>a>—00)

DEFINITIONS (cf. [1], p. 108). (i) Suppose given on the real line R,
two functions F(t), U(t) and let ¢, be a point such that the function U
is not identically constant in any closed interval whose left-hand ex-
tremity is .

Let us consider the upper limit and the lower limit of the ratio
[F(t)— F()l/LU®)—U(t,)] as ¢t tends to t, from the right by values other
than those for which F(t)— F({,)= U(t)— U(t,)=0. These two limits will be
called, respectively, right-hand upper derivate F;(t,) and right-hand lower
deriwate F7(t)) of the function F' at the point ¢, with respect to the func-
tion U.

(ii) Similarly, given on R, two functions F\(t), U(t) and given a
set FC R, let t, be a right-hand accumulation point of E such that
the function U is not identically constant in any intersection E/N\I,
where I is an arbitrary closed interval with left-hand extremity ¢,.

Liet us consider the upper limit and the lower limit of the ratio
[F(t)—F()]/[U®)—U(t,)] as t tends to t, from the right by values belong-
ing to E and other than those for which F(t)—F(¢,)= U(t)— U(t,)=0.
These two limits will be termed, respectively, right-hand upper derivate
Fift,) and right-hand lower derwate Fj ,(t) of the function F at t,
with respect to the function U and relative to the set E.

3. We are now in a position to state and prove the following

THEOREM 1. Let D be a domain in R, and let f(x, y) be a real-valued
function defined and continuously differentiable on D.

Suppose giwen in D a parametric curve C whose equations are x=¢(t)
and y=vy(t), where ¢ and v are continuous functions on R, admitting a
fimite real-valued function U(t) such that ¢<<U and v <<U simultaneously.

If fi(x, y)=f,(x, y)=0 at every point (x,y) of the curve C, then f(x,y)
18 tdentically constant along C.

REMARK. Throughout this paper, by neighbourhood of a point ¢ of
R, we shall understand any half-open interval of the form [¢,¢+¢),
where ¢>>0.

PROOF. Let us write F(1)=f(¢(t), ¥(t)) for brevity. Consider the
points ¢ of R, such that each ¢ has no neighbourhood on which the
function U is constant, and denote by 7, the set of them. Writing
further T,=R,—T,, we shall treat the two sets T, and T, separately.

(i) For each point ¢ of R, we have

F(t+h)— F@)=fua', ')t +h) — o] +1 (&', ¥ )Y (E+h) —4(?)],
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whenever | /| is so small that the segment connecting the pair of points
(o(t), ¥(t)) and (e(t+h), ¥(t+h)) lies in D. The point (2/, ¥') is suitably
chosen on this segment.

On the other hand, there are, by hypothesis, positive numbers ¢ and
M such that 0<<h <0 implies the inequalities

lo(t+h)—ot) | = M| U(t+h)— U®)],
|y (t+h)—y ()| = M| Ut+h)—U®)] .

It follows that, for fixed t& T, and for sufficiently small A>0 (cf.
our convention on a/0),

F(t+h)— F(t)

/ ! :
Gt | =ML ) [+ 1@ )
But the right-hand side of this inequality tends to zero with %, since
both f,, f, are continuous and since f,=f,=0 along the curve C. Hence
Fi(ty=Fy(t)=0 at each point ¢ of the set 7, By Theorem 5.5 of [1]
(p. 274), we conclude that [F[T,]|=0. (As in [1], |F[T,]| denotes the
outer Lebesgue measure of the set F[T,], while this latter means the
image of the set T, under the mapping F. Similarly in what follows.)

(ii) Take up now the points ¢ of the set T,=R,—T,. Each ¢ has a
neighbourhood V(t) on which the function U is identically constant. As
in (i), we can associate with ¢ positive numbers ¢ and M such that
0 << h<é implies the relations

ot +h)—o(t) | < M| Ut +h)— U(H) |,
|t B) — () | < M Tt +h)— UG | -

We may and do assume that V({)c[t,¢+0). The composed function
F(t)=f(¢(t), ¥(t)) is thus constant on V(¢).

Let {r,},_.... be a sequence of all rational numbers. For each =,
we denote by W, the union of the neighbourhoods V(¢) for all the points
t of T, such that r,&V(t). As we readily see, F(t) is constant on
this set W,. But plainly T,c\J W,, and it turns out that the set F[T,]
is at most countable. ! '

(iii) We deduce from the conclusions of (i) and (ii) that

| FIR 1 =|FIT,\UT) =< |F[T\]|+|F[T,]|=0.

Hence |F[R,]|=0, and this together with the continuity of F requires
that F' is constant over R,. In other words, f(z, ¥) is identically constant
along the curve C; and the proof is complete.

NOTE 1. In the above theorem, we can replace the hypothesis
“oLU and v<<U” by “¢o<U and +<U on R,—N?”, where N is a
countable set. In fact, F[N] is countable and consequently | F[N]]|=0.
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4, In order to establish .the second of our theorems, we shall re-
quire the following lemma, whose proof would be an almost verbal
repetition of that for Theorem 5.5 of [1] (p. 274).

LEMMA. If U and F are a pair of finite functions defined on R, tmd
if F} 550 =L7 ((t)=0 at each point t of a set K C R,, then |F[E]|=0. -

NOTE 2. If, in the above lemma, we merely require the hypothesis
—UE(t) i 2(t)=0 to hold at the points ¢ of a set A C £, then we can
at least conclude that |F[A]|=0.

This may be seen immediately by considering the intersections
ANE,, instead of the sets E,, that would appear in the proof of the
lemma. '

THEOREM 2. Let D be a domain in R, and f(x,y) o real-valued
Function defined and continuously differentiable on D. Let further C be
a parametric curve x=¢(t), y=y(t) contained in D such that both ¢ and
Y are continuous functions defined on R,. ‘

Suppose that to each positive integer n there correspond o set E, C R,
and o finite real-valued functwn U,(t) deﬁned on Rl, m such a manner
that ' ‘

¢<e,Un> 1#<En o RB=UE,

Iff(w y) fy(m Y)=0 at every pomt (.’JG y) of the curve C, then f(x y)
18 zde'ntwally constant along C.

. PROOF. Let us write F(t)=f(¢(?), w(t)) for brev1ty It is sufﬁ01ent
to prove that | F[E,]|=0 for each n. Let us suppose that every point
of E, is a right-hand accumulation point of E,, since the set of the
points isolated on the right is at most countable. To simplify the
notation, let us write £,=F and U,=U, keeping n fixed. We shall
argue by decomposing E into a pair of sets T, and T,

(i) Let 7T, be the set of the points ¢ E for each of which the
function U is not identically constant on any intersection ENV(t),
where V(t) is an arbltrary neighbourhood of ¢. Just as in the proof
of Theorem 1, the conditions (p<EU and ¢<bU together ensure that
FU {)y=F3 (t)—O for every point ¢ of T'. We therefore have | F[T]1=0
in virtue of our Lemma (cf. Note 2). '

(ii) Let T, be the set of the points ¢ E each of which has a
neighbourhood V(¢) such that the function U is identically constant on
the intersection &\ V(¢).. By hypothesis, there exist for each t& 7,
positive numbers 6 and M such that the condltlons 0<h<d and t+h€E
together imply. the inequalities

gt +h) = ()| < M| Ut+h)— U@,
R =y @) < M| Ut+h) - U®) |

‘We may suppose 0 to satisfy the further condition V{(t) C[¢, t-+4d), so
that the function F(¢)=f(¢(t), ¥(t)) is constant on E N\ V().
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For each positive integer m and each integer ¢, let us consider the
closed interval [L, Ut ] We denote by «,, any fixed pomt of
m m

Eﬂ‘— v, 'Hil‘] if this intersection is not empty, and we set «, ;=0
Lom m

in the opposite case. Since the points «, ; are countable in their totality,
we can rearrange them in a simple sequence {«;};,_,, . Ior each j, let
us denote by W, the union of the sets E/\ V(¢) for all the points t& T,
such that a;& E/\ V(t); then F' is constant on W, as we readily see..
’ On the other hand we can attach to each point t&= T, an interval
[ q’, Hi] contained in V(t) and having a point or points in common
m m
with E, because t is a right-hand accumulation point of E. Hence there
is a point «; in EN\ V(t). It follows by definition of the set W, that
T,c\J W, Since, moreover, the function F' is constant on every W,

we ccj)nclude that the set F[T,] is at most countable.

(iii) By what has been proved in (i) and (ii), we have finally
| F[E]|=|F[T,\JT,]]=0, which completes the proof in view of continuity
of the function F.

NOTE 3. As in Theorem 1, we can replace in the above theorem
the hypothesis “¢ <,z U, and <<, U,” by “¢<, U, and v<, U,”,
where each D, is a set obtained from E, by removing at most a
countable infinity of points.

5. We have thus derived two theorems which solve in the afﬁrma-
tive the problem of §1 under special conditions.

In this final section, we shall give an example to each of our theo-
rems (as modified in accordance with Notes 1 and 3 respectively), in
order to show what cases are at least included within their range of
applicability.

EXAMPLE 1. The continuous functions ¢(t) and v (t) are VBG, on R,.

On account of a theorem of [1] (p. 236), there exist bounded in-
creasing functions U, and U, such that the extreme derivates @, (),
@0, (t), Ty, (), ¥o,(t) are all finite at each point ¢ of R, except, perhaps,
those of a countable set. Let us write U= U+U,; then U<U and
U,< U, since both U, and U, are increasing functions. It follows that
e<<U and v<<U at each point ¢ of R, except at most those of a
countable set. The functions ¢ and + thus fulfil the condition of
Theorem 1 when we modify this theorem in accordance with Note 1.

EXAMPLE 2. The continuous functions ¢(t) and y(t) are VBG on R..

By definition of VBG functions, there is a decomposition of R, into
a disjoint sequence of sets E,, E,, --- such that both ¢ and + are VB on
each E,. We then deduce from Lemma (4.1) of [1] (p. 221) that there
correspond to each n=1,2,... two functions ¢, and v, of bounded
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variation over the whole line R, coinciding on E, with ¢ and v
respectively.

Let O(p,; I), V(g,; I) and Vi(g,; I) denote severally the oscillation
([1], p- 60 and p. 96), weak variation (p. 221) and strong variation (p.
228) of ¢, on any closed interval I. It is clear that O(g,; [) < V(p,; I)
for each n. We therefore get

; O(e,; Ib) g; Vien; L)< V(e,; R),

provided {I,} is a sequence of non-overlapping intervals whose end-
points belong to E,. It results that V,(¢,; E,)<V(e,; R,) for each n.
But V(g,; R) is finite since ¢, is VB on R,. Accordingly ¢, is VB, on
E,; and the same is true of v, too.

By a theorem of [1] (p. 236) already utilized, we can attach to each
n=1,2,..- a bounded increasing function U, defined on R, such that
0, <U, and v,<U, on some set D,C E, where E,—D, is at most
countable. Recalling that ¢,=¢ and ¥,=v on E,, we find that o<, U,
and v<, U, The functions ¢ and ¢ thus fulfil the condition of Theo-
rem 2 as modified in conformity to Note 3.

* * * *

There naturally arises the question: what kind of continuous curve
x=o(t), y=1v(t) satisfies the respective condition imposed on the curve
C in each of our theorems? We are unable to answer this at present.
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