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For a compact Sasakian space, the following result was recently
given by 8. Tachibana and Y. Ogawa [1].

THEOREM 1.2 Let M be a compact (2m-1)-dimensional Sasakian
space. If any sectional curvature of M is larger than 1/2m, the second
Betti number vanishes; i.e. b,(M) = 0.

In this paper, by making use of Berger’s method [2] we shall get
a little better result, namely,

THEOREM 2. Let M be a compact (2m-+1)-dimensional Sasakian
space. If any sectional curvature of M is larger than (4m— 3)/4m(2m—1),
then by(M) = 0.

The authors wish to express their sincere gratitude to Professor
S. Tachibana who offered them many suggestions.

§1. Notations?®

Let M be an m-dimensional Riemannian space. For each point P
of M, let T,(M) be the tangent space of M at P and {&*} (A=1, ---, n)
be the local coordinates system around P. We denote Riemannian
metric by g,,, the curvature tensor by R,,* and Ricci temsor by R,
=R, Choose an orthonormal basis {X,} of T,(M) and denote its

dual basis by {ey}. If we define R,,,=R,,°,, then the sectional
curvature of the 2-plane spanned by X, and X, is given by

:O(X(i)v X(j)) = 0(1, J) = Rijij
with respect to the basis {X,}.
For a p-form u, let denote its covariant derivative by pu, its ex-
terior differential by du and its co-differential by du. Let du = (dd+dd)u

be the Laplacian of u. If 7 denotes the volume element of M, the
global inner product of two p-forms w and v is defined by

1) The result in this paper was reported at the meeting of the mathematical society
of Japan which was held in October, 1966.

2) We assume that m = 2.

3) As to notations we follow Berger [2].
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(w03 =\ ()
and the global norm |ju]|>=0 of u by
lulp = jupn,

where (u, v) means the local inner product of w and v and |u|* = (u, ).
As for a p-form u the following formulas are well known.

(1.1) (uy Zu)y = |[du]>+ ]| dul]? .

(1.2) A(Jul*)[2 = (u, du)—|pu’+&y(u)/2(p—1) |,
where

(1.8) Qp(u) = (D=1 R  urstous,  —2R, utt"ous, . .

In the following « is a 2-form and g is the 4-form defined by
g =(a \a)f2. We know that it is possible to find an orthonormal basis
such that « is expressed as

A=y N o+ Aulu /\ T 0+ Ut amCom—) /\ €em

where m = [n/2].
In this paragraph we argue with respect to this basis; then the
coeffcients of

B=(1/4 !). gh/@ijkh,ei Nei e\ en

are given by
Bijin = O 0p ~ Oyl ;= Oy O gy,

On the other hand we have
(08) 3, = — VB2
= —(7,a%)a,,—,a’)a,,—(7.a%)a,,
— 0, — AT 8, — A,

Supposing « to be harmonic, each component of ¢4 is the sum of
three terms at the most. Therefore we have

08" < 3<Z<)k (@’ (F ) + ajj*g(Va)j*lcig + Qe () o}
<]

where (pa),, are components of pa with respect to the basis and
i* =141 etc.. Thus, taking account of

iVaiz = ‘2; (’705)Im;j2 ,

1<J

laf? = 25 @,
; i<

we have
o8I =3 |allparn.
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From the formula (1.2) we get
lald(jal’)[2 = —|aPlpa]’+]a|"Qya)/2.

Now we can see that SMiaﬁd(]aP)ng; in fact it is the result of the
formulas

lad(jal’)[2 = 4(Ja )[4+ (d(a]))*,

| aqaiyn=0,  { @iapynzo.
Hence, we obtain
(L.4) 1881 = 3/2)\ ol Qa).

Likewise for the 4-form g, taking account of (1.1), (1.2) and

dg=0, \ 40811=0
M
we have

(L5) los1P = lipalr — 12| Qo= -2l e
Consequently, (1.4) and (1.5) lead us to the inequality

(1.6) | (G2 @@+ 1/12)Q) = 0.

§2. Sasakian space.” »
An n-dimensional Sasakian space M is a Riemannian space which

admits a unit Killing vector field 7= »%9/0x* satisfying

VZV‘u?]u = nﬂgly_nugl/l .

It is well known that » is necessarily odd (n=2m-+1) and M is ori-
entable. If we define the tensor fields ¢;, and ¢, by

Vally = Pap s P =9 Pro s
then the following identities hold good.
Ll = =0+, =0,
Ry 5= 1,90—19,,
B poe?.°P0” = Bipo = P20P s+ PasPuo— 990 T 9209 s »
B oPu’ P06’ = Boyppo® P37 + 200209 1 — P2Po
F(G0u = 10790 = (9, = 1,7)920} -

For any point of M, we can take an orthonormal basis {X,, X, :--,

4) See S. Tachibana and Y. Ogawa [1].
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Kimys Ximsyy Xgman), Where X = (p#X ") and X,,.,, =4, and we shall
call such a basis an adapted basis.
With respect to an adapted basis {X,}, we find

1 A=yp, R
9=1 At nt=n,=(0,--,0,1),
1 A=1, p=1%,
Pru=ef =7 —1 A=1*, ©L="1,
0 otherwise .

Moreover if we put o(4, p) = o(X(, X(,), then the following equations
are the direct result of (2.1).

(2.2) o, 2m+1)=1,  2A1#2m+1,
(2.3) o(i*, 5%) = p(3, ) ,

(2.4) o(i, 5%) = p(i*, J),

(2.5) Rypgye = p(i, )+ 00, %) =2,  i%7.

We call a skew-symmetric tensor w,, to be pure if it has the pro-
perties
7°U%,, =0, gplpgopaupa = u’lﬂ ’

op
and to be hybrid if

n°Uy,, = 0, 0P Uy = Uz -

§ 3. Harmonic 2-form in a Sasakian space.

Our proof of Theorem 2 will be based on the following three pro-
positions. Hemnceforth, we consider only a compact Sasakian space M.

PrOPOSITION 1. (Tachibana [3]) In o (2m-1)-dimensional compact
Sasakian space, any harmonic p-form wu = (1/p !)uh_,_zpdxil N -+ N\ datr sat-
1sfies n°Ugpy.z, =0, Wf p=m. As the result of this, we can get ¢*u,,; ., = 0.

Generally, for the structure tensor ¢, a p-form u which satisfies
Q" Upoz,a, =0 1s called an effective form after the case of Kaehler
manifold. Proposition 1 implies that any harmonic p-form in a com-
pact Sasakian space is effective if p<m.

PROPOSITION 2. (S. Tachibana and Y. Ogawa [1]) Any harmonic
p-form u = (1/2)umdoc2 N dx# in M can be decomposed in the form
Uz = CaptCap
where {,;, is a pure harmonic tensor and &,, 1s a hybrid harmonic tensor.
PROPOSITION 3. (S. Tachibana and Y. Ogawa [1]) If M has positive
sectional curvature, then there exists mo pure harmonic 2-form other than

2ero.
In a compact orientable Riemannian space, the second Betti num-
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ber is the number of linearly independent harmonic 2-forms. By the
aid of the above three propositions, it is sufficient to prove the follow-
ing satement:

“ Under the assumption in Theorem 2, there does mot exist an (effec-
tive) hybrid harmonic 2-form other than zero.”

§4. Proof of Theorem 2.

Let a be an (effective) hybrid harmonic 2-form. We can find an
adapted basis at any point such that if {e.y, eqxs =+ €myr €mmyr €msn) 1S
the dual basis, the components of « are all zero except «,.” : that is

m m
a= D, we; )\ ey, la> = D u,’.
=1

Moreover a being effective, we get iui=0. Let p be the 4-form de-

1=1

fined by g = (a A\ a)/2, then we have
= ; Uty N\ €any [\ €0y N\ €m

and

|87 = 2 ulu; .
i<y
Iyn the sequel, we shall investigate the inequality (1.6).
Q2(a) Z RX,uuw(xHJ vo 22 Rlpaﬂa uy

Ay, 0
N 2
=2 2 (2 2 Rpprsss@ppnlss + 2R g e
fre=s Q=)

sk

9 9
— Ry’ — R s

Z 2 E B s Wi W+ 2010 U” — (Rkk+Rk"k*)uk2} .
=l =

Taking account of (2.2)~(2.5), we get
@(a)/2 = — ; (Ors + Pre) (U, — U,)" — 4 ; Uy — 2 ; Uy

If we assume that every sectional curvature is not less than a positive
number ¢, then we have by the equality (3.1) and > uu, = —|al’
ks

Q)[2.< —20 3] () +2 3w’
kFs k
= —20{2(m—1) DU, —2 D WUt +2 D u’
k ks k

= —2(2md—1)|a?.

On the other hand, as we have

5) See S. Tachibana and Y. Ogawa [1].
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Q4(ﬂ) =3 R),u/wﬂ);zpm@)mpa 2 E Rl,uﬁlparﬂ,upar
Avpv.0.0,0 A p0.0,0,T
= 8 kE R k*ss*ﬂkk*u ﬁ s*w*+ E R k*kkz*ﬂkk*'w
{ %5

+ Z Rk:i*ki*ﬂki*k*"i2 + z Rkikiﬂkik"‘i*z
ki ki

—2 % 6 > (R + Rpie) Brsris” »

k=1
we can get

Q)12 = . SE# (0s + Ops) (U, — ) 1"

—4 27 wuult—2 D3 wltu’
k.S

k.81~
and hence we have

(4.1) QUAI2 = —20 25 (U —ue) s’ —4 27 WUy’ — 2w U

k,8,13% Ie,8,%~ kFs

In order to estimate the right hand side we shall prove the following.

LEMMA. > wauu’ = |al*—4|8|?,

k,8,1 4

81 </m—T)Zm |al.
PrOOF. We set > wuu>=E. Making use of (3.1) and >] u,u,
k,s,17 JE-H
= —|al|?, we get

[0514 = (;}Sukus)z

:2‘27/%2%32—{_ Z (uk'{—ul—l_us_f_ Z ’LLC)—-[—E

k#s k.l,s#£ t k,l,s
= 4|B P+ E.

Therefore we obtain the first equality. For the second we have

= (Sw

I

i +2 > wlu
k=1

k<s

= {2[(m—1)+2} ;ukzu ’

=2m|B*/(m—1). q.e.d.

By virtue of Lemma and (4.1) we can see that the following inequality
holds good.

(1/12)Qu(8) = —26{4(m —2)| B> —2(|a|"— 4] B|")}
—A(lal'—4]5 ) —4] 8]
= —42ms—3)| > —4(1 —-0O)|a|*.
Consequently we obtain

-
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(3/2)| a|’Qy(a) + (1/12)Q,(8) = 2[{1 — (6m -+ 2)d}| a|* — 2(2md—3)| B*] .
Now we consider the real-valued function f:
fla) = {1—(6m+2)d}| a|*—2(2ms—3)|B]*.

Taking account of |8|<<~/(m—1)/2m|«a]® and (1.6), we conclude that if
0> (4m—3)/4m(2m—1), then <0, and f=0 if and only if |a|=0; i.e.
a=0. This completes the proof of Theorem 2.

REMARK. After we had prepared this paper, M. Moskal and S.
Tanno reported that the second Betti number of a compact Sasakian
space with strictly positive sectional curvature is zero.
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