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Recently S.I. Goldberg [4] proved the following

THEOREM A. If a compact, simply connected, regular 2m—+1 dimen-
stonal Sasakian space has positive seclional curvalure and its scalar curva-
“ture 1s conslant, then it 1s 'esomebmc unth a sphere St aith the natural
9truciure

"On the other hand the odd dimensional Betti number byp (M, R),
1<2p+1<m, of a compact Sasakian space M is even” and for the
even dimensional Betti number of M the following theorem is known [4].

THEOREM B. If a compact; regular 2m+1 dimensional Sasakian
space M has positive seclional curvature, then b,(M, R)y=0.

The assumption ““ regular ” :in the theorenis is essential, because the
fibration of Boothby-Wang is'uSed in their proofs.

In this paper we shall prove the followmg ‘theorem without the
assumption ¢ regular ”.

THEOREM C. If any sectional curvalure p(X, Y) of a complete 2m +1
(=5) dimensional, Sasakian space M satisfies

v 1
o(X, Y)>W )
then we have by(M, R)=0. ‘

REMARK. The metric of our Sasakian space is not normalized in
the sénce that the maximum sectional curvature is 1, though it has been
normalized in a certain sence. ‘

As to the notations we follow S. Tachibana [5] and give definitions,
preliminary facts and formulas in §1 and §2. In §3~8§5 we shall
prove Theorem C by the method of Berger [2] and Blshop Goldberg [3].

§ 1. Sectional curvature. Harmonic tensor.

Consider an m dimensional Riemannian space M with local co-
ordinate systems {#%» and denote the Riémannian metric, the curvature
tensor by "qm' Rx;,'u‘“, respectively. = At a point P of M the sectional

1)771nithe case when p =0, see S. Tachibana [5]. For p> 0, see §3. in this paper.
2) A =1, - T
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curvature o(X, Y) of 2-plane spanned by linearly independent vectors
X=2%9," and Y=wu’9,; is given by
R, 0t 0 ue

p(Xy Y): -_ (glvgﬂm_gzmgﬂv),ukulu,vuum .

If any sectional curvature of any point of M is positive, then we
call M to be of positive sectional curvature.
As the Ricci tensor is defined by R, =R,,* if we take an ortho-

Apy !
normal basis X, =v,'9,, (¢t=1,.--,n), at a point P, we have

R, = _;Rayuﬁ”@)%ci)ﬁ
and hence we have

n
Rﬂuvu)"”(l)”:;ﬁ(x(l)’ Xy -
Let u,;, be a harmonic tensor, then we have
VdVozu’l,u —Rlduap_R,uauZa _Rlypaupa: 0.

Thus the following well known fact is obtained by taking account of
the Laplacian of u,,u’.

In a compact orientable Riemannian space M,
S Fu)dV=<0
M

holds good for amy harmowic 2-form w=(1/2)w,,dz* )\ dx*, where dV means
the volume element of M and F(u) is defined by

(1.1) F(w)= Ry ur*us,+(1[2) R,  ut uee .

§2. Sasakian space.
An n-dimensional Sasakian space M is a Riemannian space which
admits a unit Killing vector field Z= %9, satisfying

727#77» = 77,192»—77»9'2;; .

In this case n is necessarily odd (n=2m+1) and M is orientable. In

the following we shall mean by M an » (= 2m+1) dimensional Sasakian
space.

Now if we define a tensor field ¢,, by

gp/’l;z = Vlﬂ/z ’ qDﬂ” = guago/wl ’
then the following formulas valid.
ple2= =0 4", @t =0,
go;w = ’—gou/l .

For the curvature tensor of M the following identities hold good:

3) d1=09/0xA
4) Cf. S. Tachibana [5].



December On the second Betti number of a compact Sasakian space 29

(2’1) Ri/wsne = ”ngu— 7]/192,/
(2'2) Rkppoqovpgoa)a = ngww +ghgyw '—gla)g,uy_ gpkvgopw + go/iw@;w
(2'3) Rdﬂpa@ldqppﬁgoypgowa = Rﬂva+nlnvgpw—‘_n#nwglp—nyﬂuglwwnlﬂwg/,w °
By virtue of (2.1) it follows that o(Z, X)=1 for any vector X, linearly
independent to Z.
Let P be any point of M, then we can take an orthonormal basis

Xy =050 X =003 Xu=2Z=n7%,; of T,(M), the tangent space at
P, such that

gzﬂxv(i)ﬂ =0, v(i*)z = ¢az?)(q:)“ , (t=1, -+, m, 1* =m-+1).

We shall call such a basis an adapted basis. Components of fensors
G20 P2 7* With respect to an adapted basis X, at the point P have
following forms : '

glﬂ = 62;1 ’ 772 == (0: tt 0’ 1)
1, if A—=i, p—i*,
ga]/l:gol'u: '—1’ if 2:?:*, /,l:'l:’

0, otherwise.
If we put o(4, p) = p(Xy, X)) for an adapted basis X;, then we can
get from (2.1) and (2.2) the following relations :
(2.4) o(t, ) = p(i*, 5%),  p(, J*) = p(i*, J)
R = 001, 5)—1
Ripi = 0(3, %) —1
(2.5) B jpis = — (1, 3)—0(t, 7%)+ 2,
where 1,9 =1, «++ , m, 1* =m-+1, j*=m-+75 and i7.
We shall call a skew-symmetric tensor wu,, to be pure if it satisfies
'y, =0, PP Uy = — Uy, |

and to be Aybrid if it satisfies

ﬂxul/z =0 ’ goldgppﬂ%aﬂ = u'},u .

§3. Proof of Theorem C.

The following two theorems are known [5].

THEOREM D. In an n (=2m-+1) dimensional compact Sasakian space,
any harmonic p-form U Uy, (L=D=m), salisfies

(3.1) 7 =0.

THEOREM E. If u is a harmonic p-form, (1=p=<m), in an n (=2m-1)
dimenstonal compact Sasakian space, then the p-form Ou defined by

aZg- "Zp
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D
ou ((Du)h...]p = ;§02iau11"'a"'2p
18 harmonic. '

Operating V*Z—g*wy to (9 1) we get
(32) gp up1723-~-2p"— 0 (2£p£'m)

REMARK. It is known that the first Betti number b(M, R) of an
2m+1 dimensional compact Sasakian space M is even [5, Theorem 4.3].
More generally we can prove that b,,. (M, R) is even, if 1<2p+1<m.”
In fact, let M) be the vector space of harmonic ¢-form over M
(1=<g=<m), and define : u—%u by

(T’u)h 2 = Pt P Mgy -
Then, by virtue of Theorem D and E, ¥ is a linear transformation of
HUM). As we have ¥*= —I (I means the identity transformation of

HUM)) for g=2p+1, so SQ”“(M) admits a complex structure and hence
dim $*2+1(M) is even. . :

In the following we shall always mean by M an n (=2m+1)
dimensional compact Sasakian space and assume 7 >5.

Theorem C follows from the following three lemmas.

LEMMA 1. Any harmonic 2-form w = (1/2)u,,dx* A\ dz* in M is written
iwn the following form

Uy, = CaptEn s

where {;, is pure harmonic and &,, is hybrid harmonic.
, LEMMA 2. If M has positive sectional curvature, then there does not
exist a pure harmonic 2-form other than zero.

LEMMA 3. If any sectional curvature po(X, Y) of M satisfies

1
om ’

then there does mot exist a hybrid harmonic 2-form other than zero.
PROOF OF LEMMA 1. For a harmonic tensor u,,.
’ (@2711)2/1' : 2u’2,¢z+2g01 (p

is harmonic, by virtue of Theorem D and E and hence so is go2 o f
Thus putting - :

G = (1/2)(“*1# —@P ) & = (1/2)(uy,+ ¢x“§0yﬁuaﬁ)' ,
we can get Lemma 1.

§4. Proof of Lemma 2.
Let {;, be pure harmonic in M with positive sectional curvature.
Taking account of (2.2) and the pur1ty of 4’2#, we can get

" 5) ThlS is due to H. Wakakuwa
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F(¢) = Ry, 03¢k o+ (1)2)R,,,, 10>
= RX#CZUCCH& - CZ#C’I»/‘ y

where F(.) is defined by (1.1).. ,

Now assume that ¢;, is not a zero temsor at a point P. Let X
be an orthonormal basis of T,(M), then in terms of components with
respect to this basis F({) becomes the following form:

F(i) = E Rl/_zCZd{pa_- zclué’ly . |
Apsa ’ Lp

’

If >3¢2=0a*%0, then we can take an orthonormal vectors Y Y -

2 .
Y, such that '

¢ _
Yy = ;dal_X(D ’ Yop=2
and we have
22 Rl,ucllc,ul = a’p( Y(x)a Y(z)) + 0"22; o( Yu), Y(,;))
Y 7=
>a’o(Yyy, Yi)=0a*= ;Cﬁ .

Thus if ¢,, is not a zero temsor at P, then we have F({)>0 which
contradicts to the argument in §1.

§5. Proof of Lemma 3.

Let ¢&,, be a hybrid harmonic tensor in M with sectional curvature
1
:>:5>§n7.

Assume that ¢,, is not a zero temsor at a point P and in the
following we consider all quantities at the point P. Now we define
a by ar=¢gE.» then we have ¢a *=a,"¢ *. Hence if X=1%, is a
proper vector of the matrix (ay), so is ¢ X = ¢, 29,. As Z=7%, is a
proper vector of (ap), we can get an adapted basis X, X = X,
X = Z, where X, (¢=1,..-,m), are proper vectors of (am). With
respect to such an adapted basis, components of ¢,, are all zero except
&, =&y = —Euy. From (3.2) it follows that

> =0.
i=1
Taking account of this equation, (2.4), (2.5) and

Rfi == Ri*i* = Z,O('l:, -7)+ 2,0(?:, j*)"l— 1 ’
j=1 j=1

j¥e

F(£) becomes the following form :
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F(E) = 2{ Rl,ugkazgﬂd—l—(l/z) Z Rlpvwglﬂng

Aty

= Z (Bt Rys)€+2 Z R i€

=22{ 200, J)+Ep(% T*)+1}3&.2

PR Y

—223{ 23 (0, 3)+p(3, 5*)—2)& €+ p(i, i*)EF

i jxt
= 25200 )+ 000, G¥N(E—E) 23580
z262§(Ei2—25j&+5,.2)—2253
1 7% ]

= 2(2md—1)3]€,2>0..

Thus the lemma is proved.
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