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In this paper we shall consider the product Ex E' of two mutu-
ally isogenous elliptic curves E, E” whose rings of endomorphisms are
the ring Z of rational integers. We ask whether Ex E’ can be a
Jacobian variety of some curve; and further in how many essentially
different ways. In other words we try to obtain a formula for the
number H of isomorphism classes of canonically polarized Jacobian
varieties (Ex E’, Y), Y being a theta divisor: The number H proves
to be closely connected with the number of ideal classes and the
number of ambiguous ideal classes of a certain imaginary quadratic
field Q(»/—m) [§8]. The method of this paper is basically the same
as that of a study [2], in which the rings of endomorphisms of E, E’
are the principal order of an imaginary quadratic field. I wish to
express here my hearty thanks to my friend M. Nishi for his sug-
gestions and encouragement.

§1. Basic homomorphism. Let E and £’ be two mutually iso-
genous elliptic curves whose rings of endomorphisms are isomorphic
to the ring Z of rational integers. We denote by H(E, E’) the set of
all homomorphisms of E on E’. Then it is easy to see that H(FE, E)
is a module isomorphic to Z; namely there is a basic homomorphism
reH(E, E') such that every element 2 of H(E, E’) is an integral mul-
tiple of z:2=mnr, neZ Obviously r is a homomorphism of the mini-
mal degree: v(r)<<v(1). We know that there is a homomorphism <’
of E' on K such that " or=md, rotv=md,, where m=y(r)=r(z/) and
0y (resp. 0p) is the identity map of K (resp. E'); the number m is
determined uniquely by a pair {E, E’}. We shall show

LEMMA 1. Notations being as above, either t or o' 1is a separable
homomorphism whose kernel is a cyclic group of order m.

PROOF. First we shall show that the kernel g of « is a cyclic
group. Since dim E=1, by the fundamental theorem of finite abelian
groups, g is a direct product of two cyclic groups of orders =, and n,,
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where we may assume n,|n,. If n,>1, then g contains the kernel of
the endomorphism »n.0, This means that there exists a homomorphism
¢ of E on E' such that pondy,=r7; this contradicts to the fact that
7 is a basic element of H(¥, E'). Hence n,=1 and g is a cyclic group.
By the same reason the kernel of ¢/ is a cyclic group. Next suppose
the characteristic p is positive and r inseparable. Let k be a common
field of definition of E, E’, 7, and x a generic point of E over k. We
may assume that k£ is algebraically closed. Then the inseparability
of = means that k(z?)Dk(zx). Now it is known that the endomorphism
pd, of E is inseparable and its kernel is isomorphic to a cyclic group
of order p“. Therefore, if g contains a cyclic group of order p, then
k(px) contains k(rx), so that the correspondence Espxr-—stxel’ gives a
homomorphism g of E on E’ such that v(g)<<v(r). Since r is a basic
element of H(E, E’), this is a contradiction. Hence the order of g is
relatively prime to p. We know that there is a positive integer =
such that ¢ is a composed map of two homomorphisms defined by the
correspondences Esx—ar"eE?" and EP"sx?"—rxek’, the degree of the
latter homomorphism being prime to p. Then we can see that ¢/ is
a composed map of two homomorphisms: a homomorphism of E’ on
E?", of degree [k(x?") :k(rx)], and that of EP" on E, of degree p"; both
are separable. Hence ¢/ is separable and the proof is completed.

§ 2. Elliptic curves on ExXE. Now we consider the product
Ex FE'. Transposing EF and E’ if necessary, we may assume without
loss of generality, that ¢ is separable. For any two integers a, b,
{a, b} #={0, 0}, the correspondence"

h, . Esx—(ax, brx)e < E'

a,br

defines a homomorphism of E into Ex E’. The image of E by h,,, is
an abelian subvariety of dimension 1 on Ex E’, namely an elliptic
curve lying on EXE'; we denote it by E,,. It isclear that transla-
tions of E,,. also are elliptic curves on Ex E’. Conversely we can
see that every elliptic curve on Ex E’ is a translation of some E,,”.
In order to calculate intersection numbers of divisors on EX E we
need some lemmas.

LEMMA 2. v(h,,.)=(a? ab, mb?).

PROOF. Putting (a, b)=d, a=a'd, b=0b'd, we have h,, . =hy ,.0ddg
and v(h,,)=d’v(h, ,.). Hence, dividing both sides of the above equality
by d* and replacing o, ¥ by a, b respectively, we may assume that
(a, b)=1. Let k be a field over which E, E’, r are defined, and = a

1) If por were purely inseparable, then H(E, E)®Q would be a quaternion algebra
over Q. See Deuring [17.
2) The proof of this is similar to that of Lemma 1 in [2].
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generic point of E over k. Then v(h,,.)=[k(x) : k(ax, brx)]. Since (a, b)
=1, we have Fk(ax,brx)=Fk(ax, atx, brx)=Fk(ax, ) ; and (a?, ab, mb?)=
(a, b)(a, mb)=(a, m). Hence we may further assume that b=1. Now
h,. is separable. Hence v(h,.) is the order of the kermel g, of &, ..
We know that g, is the intersection of the kernels of ad, and r; con-
sequently g, is composed of all elements of the kernel of r whose
orders divide a. Therefore we have v(h, )=(a, m). This completes
our proof.

LEMMA 3. Let x and y be two independent generic points of E over
a field k. Assume ad—be+0; a,b, ¢, deZ. Then

[k(x) : k(ax+by, cx-+dy)]= (dd —bc)?

This lemma is a special case of Lemma 2 [2], so we omit the proof
here.

Now every endomorphism of Ex E’ is given by the following cor-
respondence

Ex E's(x, ty)—(px +mry, tqx +sy)ell x K’

where «, yeE ; p, q, v, seZ. We may represent this endomorphism by
a matrix (p m"p).
q s

COROLLARY OF LEMMA 3. v(p M7 (ps—mar)?.

q s

PROOF. If ps—mgr=0, then the endomorphism is into and both
sides of the equality are zero. Assume ps—mqgr+0. Let x and y be
two independent generic points of E over a field k over which E’ and
r are defined. Then by Lemma 3, px-+-mry and gx+sy are independent
generic points of E over k and the endomorphism is onto. The
left hand side is equal to [k(x, vy); k(px-+mry, tgx+rsy)]. Our asser-
tion follows immediately from Lemma 3.

On account of Corollary of Lemma 3 the endomorphism (g mfg)

is an automorphism if and only if ps—mgr= +1.

In what follows we denote by (X, Y) the intersection number of
divisors X and Y on Ex FE'.
ad —bc)*m
LEMMA 4. (E,,. E.,)= N(((L br)N.()c, o
= N(a, br) etc. (for brevity’s sake).

PROOF. If ad—bc=0, then we have E,, =F,, and the above
equality clearly holds. Assume ad—bc=+0. Let k be a field of defini-
tion for E, E and r; and = and ¥ be two independent generic points
of E over k. Then by Weil [7] Cor. 2 of Th. 4

where we put (a?, ab, mb?)
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(K, o0 B, 4.)=[k(ax, brx, cy, dry) : k(ax-+cy, bre+dry)]

_ [k, ) : k(u, v)][k(%, v) : k(u, )]
[%(x) = k(ax, bre)|Lk(y) : k(cy, dvy)]

where we put u=ax-+cy, v=bx+dy. Our assertion now follows from
Lemmas 2 and 3.

COROLLARY 1. E,, =E, , if and only if ad—bec=0

PROOF. The “if ” part is obvious. The ‘“ only 1f ” part follows
from Lemma 4.

COROLLARY 2. (&, E, .,)=1 with (a,b)=(¢, d)=1 if and only if
ad—bc=+1 and m=(a, m)(c, m).

PROOF. If ad—bec=+1, then clearly (a,b)=(c,d)=1. So we are
assuming (a, b)=(c, d)=1 in both directions. Then by Lemma 4,
(B, 0 E,0)=1 if and only if (ad—bec)*m=(a, m)(c, m). The last equality
implies that (ad—bc)® divides both (a, m) and (¢, m); consequently
(ad—0bc)? | (a, ¢, m) | ad—be. This means that ad—bc= +1. The rest is
obvious.

Now suppose (E,,,, E ,)=1. Then by Weil [7] Cor. 2 of Th. 4,
E,,. <X E,, is isomorphic to ExE'; moreover the isomorphism is given
by the correspondence

Ea bt X Ec dra(P’ Q)__)P+ QGEX E,

Assuming that (a, b)=(c, d)=1 (there is mno loss of generality in so
doing), there is a separable homomorphism of E on E,, (resp. E,,)
whose kernel is a cyclic group of order (a, m) (resp. (¢, m)). Since by
Corollary 2, (a, m) and (c, m) are relatively prime and (a, m)(c, m)=m,
there is a separable homomorphism either of E,, on E,, or of E,,
on E,, whose kernel is a cyclic group of order m. This shows that
the number m is an invariant of the isomorphism class of Ex E".
Another application of Corollary 2. It is easy to see that for a
given elliptic curve E,,, (a, b)=1, there is an elliptic curve E,, such
that (E,,., E.q)=1 if and only if (a, m) and m/(a, m) are relatively
prime. We can conclude from this that a necessary and sufficient
condition that every elliptic curve E,, shall have a “ partner” E,,
on ExE' such that (F,,., E,,)=1 is that m has no squared factor.

§ 3. Intersection numbers. Now any divisor X on ExE' is al-
gebraically equivalent to a linear combination of elliptic curves
E (=Ex0), E, (=0xE') and E, which is the graph of a basic homo-
morphism 7z of E on E' (cf. Weil [7], Th. 22):

(1) X=qFE, ,+rE, +sE . (q,r seZ)

Since the intersection number (X, E, ;) is linear with respect to X,
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we know by Lemma 4 that there are constants k,, g,, {, depending only
on X such that

1

(2) (X, Ec,dr) = —mﬁ

(k0> — 2g,0d +1,d2)

for every E_,. We can easily see that constants &, g,, [, are uniquely
determined by X. We attach a matrix

k, —g )
3 M(X =( C
®) X)=(_g "%
to any divisor X. Then M(X)=0 if and only if X=0. And we have
- m b* —ab
(4) M(Bos) =i oy )
- _[r+ms —ms s L :
For divisor (1) we have M(X)= (—'ms‘ mq—{—ms)' This implies in parti-

cular that %, g,, [, in (3) are three integers satisfying the congruences
g,=l=0 (mod m); and that conversely for any such three integers
k, g9, 1, there exists a divisor X on ExE' for which (3) holds. We
can write

(3) M) = _ e =79) (1, 9, 1e2)

Let X, Y be any two divisors. Since (X, Y) is linear with respect to
Y, by (2), (4) we have (X, Y)=Fkl' + k' —2mgg’, where M(Y )= (__k, /-mg’).
Putting X=Y, we have

1 il —mgte
(5) ——Z—(X, X)=kl—mg*’= — det M(X) .

§ 4. Divisors with self intersection number 2. Lét X be a divi-

sor on Ex E' and put M(X)s(_';;g—%gl). Suppose X is algebraically

equivalent to a divisor Y, ¥Y>0, (Y, Y)=2. Then M(X)=M(Y), and
by (5) we have kl—mg®’=1 (this implies k+0), and by (2) k=(Y, E, )>0.
We consider the converse. Let k, g, be integers such that £>0 and
kEl—mg*’=1; and X a divisor on Ex E’ such that M(X) is given by (3').
Then we have (X, X)=2 and (X, E, )>0. Now the following lemma
holds.

LEMMA 5. Let X be a diwvior on EXE' such that (X, X)=2. Then
either I(X)=1, (—X)=0 or I(—X)=1, (X)=0. UX) means the dimen-
ston of the complete linear system | X|.) ,

PROOF. The proof is similar to that of Lemma 4 in [2]. It runs
as follows: Since the arithmetic genus of an abelian variety is zero
(ef. Nishi [4]), it follows from the theorem of Riemann-Roch in Serre



14 T. HAYASHIDA NSR. 0.U,, Vol. 16

{6] that U(X)+U—X)=—xmw(X), Where yp (X) means the virtual
arithmetic genus of X. By Nishi [4] Theorem 6, zEXE,(X):mé(X, X)

for any divisor X on Ex E’. Combining these two facts and our as-
sumption, we obtain the desired result.

Returning to our case, by means of this lemma we know that
either (X)>=1 or |(—X)=1. Since (X, E, )>>0, the latter case can not
occur. Therefore there exists a positive divisor Y linearly equivalent
to X.

Next suppose Y and Y’ are two positive divisors on Ex E’' such
that Y=Y’ and (Y, Y)=2. Now Nishi [4] Theorem 6 and its Corol-
laries implies the following

LEMMA 6. Let Y be a positive divisor on Ex E' such that (Y, Y)>0;
then Y 1is mon-degenerate and (Y)=1/2(Y, Y).

Then by Lemma 6 and by our assumptions, there exists teE x E’
such that Y~Y’; and [(Y)=1. Whence Y=Y/, namely Y is a transla-
tion of Y.

k —mg
; ml)’ k, g, leZ, k=0,

kl—mg*=1, there corresponds a positive divisor Y, with the self

intersection number 2, on E'X E’, such that M(Y)= (_ml; —%gl), and

convergely ; and by each such matrix, Y is uniquely determined up
to translations.

We have seen that to any matrix (_m

§ 5. The problem. Now we ask in how many essentially different
ways ExE' can be a Jacobian variety. In other words, we try to
obtain the number of isomorphism classes of canonically polarized
Jacobian varieties (ExE’, Y). The base of our calculation is the
following

LEMMA 7. (cf. Weil [8] Satz 2) Let Y be a positive mon-degenerate
diwvisor on Ex E' such that (Y, Y)=2. Then, either Y is irreducible and
Ex E'" is the Jacobian variety of Y, the identity map of Y being the can-
onical mapping of Y imto its Jacobian wvariety; or Y 1s a sum of two
elliptic curves, Y=E + E, (E, E,)=1.

Now we introduce an equivalence relation A Y(Y)=Y" in the set
of all positive divisors Y with (Y, Y)=2, where 4 is an automorphism
of ExE'. We shall see below that the number of these equivalence
classes is finite; we denote it by h,. If Y is irreducible, then by
virtue of Lemma 7, Y is a non-singular curve of genus 2 and Ex E’
is the Jacobian variety of Y, Y being a theta divisor of Ex E'; and
by Torelli’s theorem two such curves are birationally equivalent to
each other if and only if they are equivalent in the above mentioned
sense ; we denote by H the number of equivalence classes which con-
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tain positive irreducible divisors Y, (Y, Y)=2. Finally we denote by
h, the number of equivalence classes which cantain sums of two
elliptic curves E,+ E,, (E,, E;})=1. Then, by virture of Lemma 7 we
have H=h,—h,.

Suppose an automorphism 4 of Ex E’' is given by the correspon-
dense described before Corollary of Lemma 3. Then it is easy to see
that the condition A-'(Y)=Y" is written in the following form :

(- SJHeO(G ) =m0
This determines an-equivalence relation in the set of matrices M(Y),
where Y>>0, (Y, Y)=2. We now associate a quadratic form Fkx’®—

2mgxy +mly? with M(Y):( i —mg). This is a positive primitive (i.e.

—mg ml
(k, —mg, ml)=1) quadratic form of determinant m. Since ps—mqr= +1,
with equivalent matrices there are associated quadratic forms in the
same class. Now first we show that any class of positive primitive
quadratic forms of determinant m contains at least one form asso-
ciated with some M(Y), Y>>0, (Y, Y)=2. To prove this, suppose a
form F=Ax*+2Bxy+ Cy® with AC—B’=m, (4, B, C)=1, A>0, is given.
Then there are two integers, z, ¥, prime to each other, such that
Axi+2Bxy,+Cy: is prime to m®». Hence, applying a unimodular trans-
formation to F' if necessary, we may assume that A is prime to m.
Then a substitution z=«'+ry, y=v with Ar+ B=0 (mod m) takes F'
into a form A’x”?+42B'x'y’+C'y"* such that B=C'=0 (mod m). Next we
show that if quadratic forms F, F’, associated with matrices M(Y),
M(Y") respectively, are in the same class, then these two matrices are
equivalent to each other in the above mentioned sense. To prove this
it is sufficient to see that the equality _

» q E —mgy(p r B K —mg'

(r s)(~mg ml)(q s)—(—mg’ ml’)

where ps—qr= +1, kl—mg®=1, implies that r==0 (mod m). By consider-
ing both sides modulo m, this readily follows. _

We have seen that there is a one to one correspondence between
the above mentioned equivalence classes of divisors Y, Y>>0, (Y, Y)=2,
(i. e. isomorphism classes of polarized abelian varieties (Ex E’/, Y)) and
classes of positive primitive quadratic forms of determinant m. This
in particular implies that h, is finite.

§ 6. Calculation of A, Let E

a,br

. and K, , be two elliptic curves
on Ex E'. By Corollary 1 of Lemma 4, we may assume without loss

of generality, that (a, b)=(c, d)=1. Then by Corollary 2 of Lemma 4,

3) See for example Mathews’ book: Theory of numbers, Art. 127.
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(Eyper B, 4)=1 if and only if ad—bc= +1 and (a, m)(c, m)=m. Putting
(@, m)=m,, (¢, m)=m, we have

2 . 2
M(Ea,,br+Ec,dr):m2(_Zb ?12) +m1(——(6id CCCE)

-2 A

“\—c¢  al\0 m,/\—=b a°

Hence we know that the quadratic form associated with M(E, ,.+ E. ;)
is equivalent to a quadratic form m,2’+m,y?, where mm,=m, (m, m,)
=1. Conversely suppose any two positive integers m, m, for which
mm,=m, (m, m,)=1, are given. Then there exist integers b, d such
that m,d—mpb=1; and the quadratic form associated with M(E, ,.
E,, ) is equivalent to ma’+my’. Moreover, if two positive forms
m@-+my?, and nax’+ny’ with mm,=nmn,=m, (m, m)=(n, n,)=1, are
equivalent, then either m,=mn, m,=n, or m,=n, m,=n, (Notice that
if m,<m,, then m, is the least positive integer represented by mx*+
myy’.) From these we know that h, is equal to the number of fac-
torizations of m such that m=mm, m >0, (m, m,)=1. Thus we have

1 (if m=1)
Ul (i m>1)

where ¢ is the number of prime factors of m.

§7. Calculation of A,. Class number formulas for quadratic
forms are classical. For completeness we shall briefly note a way of
reduction and state the results.

Two quadratic forms F, F’ are said to be properly equivalent to
each other if there exists a tranformation with determinant 1 which
takes F into F”. Then the number of proper equivalence classes con-
tained in a class of quadratic forms is one or two. In the former
case the class is said to be self conjugate (or ambiguous). We denote
by H, the number of proper equivalence classes of positive primitive
quadratic forms of determinant m ; and by H, that of self conjugate

classes. Then we have hlz»_;—(Hl—q—Hg).

CALCULATION of H,. Put m=f*m, where m, is square free. We
distinguish two cases according as m,=1 or 2; or 3 (mod 4).

CASE I. m,==1 or 2 (mod 4). In this case all forms are properly
primitive: (4, 2B, C)=1. Let R=[1, »~/—m] be the ring of all integers
of the form x4y —m (z,yeZ); and by o the principal order of
Q(~—m,)- . Then the conductor §f of R is fo. There is a one to one
correspondence between proper equivalence classes of positive primi-
tive quadratic forms F(x, y) of determinant m and classes of regular
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ideals a=[a, a,] of R, such that N(ax+ a,y)=NaF(x, y), Im(a,/a,)>>0.
Again, there is a one to one correspondence between regular ideals
a in R and ideals a, of o, relatively prime to the conductor fv, such
that ao=a, a,/\R=a. The correspondence a—a, determines a homo-
morphism of the class group of (regular) ideals of R on that of o.
We denote by K the order of the kernel of this homomorphism. Let a
be an element of o which is prime to fo. Then ao/\R is a principal
ideal of R if and only if there exists a rational integer » and a unit
¢ of o such that a=re (mod fb). Whence we can conclude that

2 (1_M) (if m>1)
H1=Kh, K={ W »ir b

1 (if m=1)
where w is the number of units of o; y(p) is the Kronecker symbol

for Q(»/—m,); and h is the number of ideal classes of o; and the
product extends over all prime factors of f.

CASE II m=3 (mod4). In this case, o=[L, _;_(1+¢_mo)]. A

primitive form Ax’+2Bxy+Cy?® is properly or improperly primitive
according as (4, 2B, C)=1 or 2. Both cases can be treated similarly
as in case I:
(i) Case of properly primitive forms. We must put R=[1,/—m],
f—2fo. We then have K:iﬂ< —l(ﬂ)
W plar D
(ii) Case of improperly primitive forms. In this case f must be

odd. We must put N(a1x+a2y)=%NaF(9c, ), R:[l,—é—(lJFN/:}ﬁ)],
and f=fo. We then have
0 (if m>3, m even)
K,— %H (1_%@) (if m>3, m odd)

olf

1 - (if m=3)

Then we have H,=(K,+ K))h.

CALCULATION of H,. To calculate the number of proper classes
of quadratic forms, it is sufficient to consider reduced forms Ax*+ 2Bxy
+Cy?, |2B|<A<C. A self conjugate form is equivalent to a reduced
one for which B=0 or A=C or 2B=A. By applying a substitution
x=—y', y=a'+9y, to forms in the last case, we can unify the latter
two cases. Hence we have two cases:

(i) Ax*+Cy?, 0<<AZC, (A, C)=1, AC=m. There are 2~ such forms
if m>1; one form, if m=1.

(i) Ax*+-2Bxy+ Ay, 0<<B<<A, (4, B)=1, A2——Bzzm.. There are
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2= such forms, if m=1 (mod 2) and m>1 or m==0 (mod 8); no form
otherwise.
Since H, is a sum of the numbers in (i) and (ii), we have

2t if m is odd or m=0 (mod 8)
1 20 if m=2, 4, 6 (mod 8).

§ 8. Class number formulas. We summarize our calculations in
the following formulas for H. Writing

iy 22

we have :
L. If m=1 (mod4), f odd or f=0 (mod4); or m, =2 (mod4), f

even, then H———-—hw—g[r( f) ,
II. If m=1 (mod4), f=2f, f, odd ; or m=2 (mod 4), f odd, then
_ h __ot-2

CH=y(f)-2

L If m=3 (mod4), f odd, then H:—fu—(w(2f)+«/r(f))
IV. If m,=3 (mod4), f=0 (mod 4), then H:%«#(Zj‘)

V. If mg=3 (mod 4), f=2f, f, odd, then Hz_ﬁ).¢(2 Fy—2-2

except when m is 1 or 3. In cases that m ts 1 and 3, H is 0 and 1
respectively. (m=f*m, m, is square free; w is the number of wunits of
the principal order o; h the number of ideal classes of o; x(p) the Krone-
cker symbol for Q(5/—m,); t the number of prime factors of m)

These formulas imply in particular that H>0 in cases I, III, IV.
We now consider case II. Suppose first m;=1 (mod 4). We denote
by t, the number of prime factors of 4m,; and by ¢, the number of
prime factors of f, that do not divide m,. Then 2! is the number
of ambiguous ideal classes of p, so that we have 2%'|h. We can
easily see that 24|+ (f)). We have ¥ (f)=2vy(f,), since x(2)=0. From
these facts we know that H is zero if and only 1if w=4, h=2%"1 and
P(f,)=24 These conditions mean that m,=f,=1. Suppose next m,=2
(mod-4). We denote by t, the number of prime factors of m,; and by
t, the number of prime factors of f that do not divide m, Noticing
that w=2 in this case, we can see that H=0 if and only if h=2t"!
and y(f)=24. The last equality holds if and only if f=1; or f=3 and
2(3)=1. Finally we consider case V. We denote by ¢, the number of
prime factors of m,; and by ¢ the numbers of prime factors of f,
that do mnot divide m, Noticing that.y(2)=—1 for Q(v/—3), we can
see that H=0 if and only if w=2(2—x(2)), h=2%""' and +(f,)=2".
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Namely, H=0 if and only if m,=3 and f,=1; or m;>3, x(2)=1 (i e.
my=-—1 (mod 8)), h=2%"1 and y(f,)=24. The last equality holds if and
only if f;=1; or f,=3 and x(3)=1 (i.e. my=—1 (mod 3)). Thus we
have proved the following

THEOREM. Let E and E' be two mutually isogemous elliptic curves
whose rings of endomorphisms are isomorphic to the ring Z of rational
integers. Then ExXE' can not be a Jacobian variety if and only if the
degree m of the basic homomorphism of E on E' is equal to one of the
Sfollowing integers: (i) 1, 4, 12; (ii) f*m, (m, is square free) for which
every ideal class of the principal order of Q(~/—my,) is ambiguous, and
JS=1, m=2 (mod 4) ; f=3, m=2 (mod 12) ; f=2, my=—1 (mod 8) ; or f=6,
my=-—1 (mod 24).

On the other hand by virtue of a well known theorem of Siegel
[6], we can easily see from the above formulas that H tends to infinity
with m. In particular, there are only a finite number of values of
m for which Ex E’ can not be a Jacobian variety.
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