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§1. Introduction. In a finite-dimensional Kuclidean space with:
natural order by the positive cone K={x; x={x;}, ;=0 j=1, ---, n}, the
following two theorems concerning spectral properties for non-negative.
matrices are well known:

THEOREM AY A non-negative matrix T 1s indecomposable, ©.e. it can.
Tl,l T1,2

Tz,z
applying one and the same permutation to the rows and colums, if and.
only of T satisfies the following condition (a):

(a) FEach of the proper spaces of T and T* corresponding to r(T)*
18 a ome-dimensional subspace passing through a positive element®.

THEOREM B* A mon-negative matriz T is primitive, i.e. there exists:
o natural number m such that T™=(t{P), t{P>0 (¢, =1, ---, n), if and only
of T satisfies the above condition (a) and the following condition (b):

(b) The set of the proper values of T on the circle |A|=r(T), consists-
only of r(T). . :

M. G. Krein and M. A. Rutman generalized the concept of primi-.
tive matrices to the case where a Banach space ordered by a closed
proper positive cone K having non empty interior and obtained the
result corresponding to Theorem B for completely continuous operators.
in that space [5: Theorem 6.3]. This was partly extended to more
general cases by many authors. Among them, S. Karlin [4] and H.
Schaefer [8] investigated the extention to the case that an operator,
not necessarily completely continuous, has the resolvent with »(7T) as.
its pole. Further, in case of the positive cone with empty interior
H. Schaefer [8 : Theorem 2] obtained a sufficient condition for an oper-.
ator to have the properties corresponding to (a). Only recently, F.
Niiro generalized the notion of indecomposability to the case of a space.
[, with natural order and obtained the results corresponding to
Theorem A and B [7: Theorem 1 and 5]. The aim of this note is to.

) with square submatrices T,,, T,, by

1) See, for example, F. R. Gantmacher [3].

2) #(T) denotes the spectral radius of 7. In this case, »(7) is the maximum.
modulus of all proper values of T and it is also a proper value.

3) An element v is positive if v={v;}, v;>0 for all j=1,...,n.

4) See G. Frobenius [2].
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obtain a generalization of the results of Theorem A and B.

Let E be a partially ordered real Banach space with a closed and
proper positive cone K and T be a positive operator in E. Also the
complexification of £ and the extension of T to E will be denoted
respectively by the same letters E and T, but the cone K is always
included in the real Banach space E. Following S. Karlin and H.
‘Schaefer we shall make use of an operator whose resolvent R(A, T)
has the point A=#(T') as its pole (it is well known that such operators
have the number »(7T) as its proper value). Further, we introduce the
three concepts of semi-non-support, non-support and strict non-support
-operators replacing the role of positive elements in Theorem A and B
by that of non-support points”®. The first concept is a generalization
of the notion of indecomposable non-negative matrices and the second
and third ones are generalizations of the notion of primitive non-
negative matrices. Let (A) and (B) be the following two conditions
for T corresponding to (a) and (b) respectively.

(A) The proper space corresponding to the proper value 7(T) of
T is a one-dimensional subspace passing through a non-support point of
K. The proper space corresponding to »(7T') of T* is also a one-dimen-
sional subspace of E* passing through a strictly positive functional.®

(B) The spectrum of T on the circle |A]=7(T") consists only of »(T).

In this paper our main results are as follows:

Let K be total and T be a positive operator whose resolvent R(A, T)
Jhas the point A=r(T) as its pole.

IP. Then, holds the following logical relation :
r(T)>0 8’

T satisfies (A).

1I*.  Further, let K be normal and minthedral, and let the dual cone

K* be also normal. Suppose an operator T satisfies the condition that the

T is a semi-non-support operator <

spectrum of T on the circle |X|=r(T) consists only of poles and each proper
space corresponding to proper values on the circle |A|=r(T) is finite-dimen-

stonal. Then, holds the following logical relation :

r(T)>0 :

T satisfies (A) and (B).

These results include a generalization of the results of the theorem 12
and 13 in S. Karlin’s paper [4]. By analyzing the property (A) and
the result I, we can obtain the result of the theorem 2, 3° in H.
Schaefer [8] without any supplementary conditions a), b) and c¢) there.

T is a non-support operator <

5) This definition will be given in section 2.

6) This definition will be given in section 2.

7) In this paper it corresponds theorem 2 in section 4.

8) X=Y or YeX denotes “ X implies ¥” and XY denotes “ X=Y and X<=Y 7.
9) In this paper it corresponds theorem 5 in section 5.

l.i}u
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§2. Notations and terminologies.” We shall denote the complex
number field and the real number field by C and R respectively. Let
E be a Banach space over R, partially ordered by a proper closed cone.
K and E* be the topological dual of E. A cone is positive if the order
of the space is given by that cone. A cone K is proper if K/N\(—K)
={0}. A cone K is mormal if there exists a positive number & such
that |[|x+y||=0 whenever |[z|[=[|y||=1, ¢, y=K. A cone K is minihedral
if there exists sup{x, ¥y} whenever z,y=K. A cone K is total if
(K—K)*=FE"™. A linear functional f is called positive (resp. strictly
positive) if fEE* and f(x)=0 for =K (resp. f(x)>0 for nonzero x=K).
Dual cone K* is the set of all positive linear functionals. z&K is a.
non-support point of K if f(x)>0 whenever f&=K*, f-~0.

We shall denote by L(E) the set of bounded linear operators map-
ping the space E into itself. An operator T (E) is called positive
if TKcC K and strongly positive’® with respect to K if T is positive and
for each nonzero x<=K there exists a natural number n=mn(x) such
that T™x is an interior point in K. The resolvent of T, denoted by
R(,T) or R(2), is a bounded linear operator (A/—7T)' whenever it
exists for 2. The set of 2 where R(Z, T') exists is denoted by o(T).
The complement of o(T) in C is the spectrum of T, denoted by &(T)..
If there exists a nonzero x&FE, which satisfies Tx=2x, 1 is called a
proper value and x a proper vector corresponding to 4. The proper space.
corresponding to 2 is the set {x; Te=2ax}. The spectral radius of T,
denoted by »(7T') or simply 7, is the maximum modulus of the elements.
of &(T), i.e., _
: r=max [2|=1m%/|[T7.

2€6(T) n—oo

§ 3. Fundamental definitions and their direct consequences. In
this section we shall define semi-non-support, non-support and strict -
non-support operators with respect to the positive cone K in E and
discuss their simple properties'.

DEFINITION 1. Amn operator T is a semi-non-support operator in K
with respect to K if T s positive and for each nownzero x—=K and for each
nonzero f& K* there exists a natural number n=n(x,f) such that f(T"x)>>0.

10) X% is the closure of X and X? is the boundary of X.

11) The terminology by Krein-Rutman [5], S. Karlin called it quasi-strictly posi-
tive [4].

12) For these definitions, see propositions 2, 3 at the end of this paper.
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DEFINITION 2. Amn operator T is a mon-support operator in E with
‘respect to K 1if T 1s positive and for each monzero x&=K and for each
nonzero f&K* there exists a natural number n,=n(x, f) such that (T x)>0
“whenever nz=mn,.

DEFINITION 3. Amn operator T is a strict non-support operator in E
‘with respect to K if T is positive and for each monzero x—K, there exists
-a natural number n,=mn(x) such that T"x s a mon-support point of K
“whenever nz=mn,.

It is obvious that a strict non-support operator is a mnon-support
-one and a non-support operator is a semi-non-support one. If the posi-
tive cone has the non empty interior, the notion of strict non-support
-operator coincides with that of strongly positive one. In a n-dimen-
sional Euclidean space with natural order, it is easily seen that the
four mnotions of non-support operators, strict non-support operators,
strongly positive operators and primitive matrices coincide. Also, when
‘7 is not 1, the notion of semi-non-support operators coincides with
that of indecomposable non-negative matrices. The proof is the fol-
(T, T,,

lowing : Since T:K T’) (T,, 7T,, are square matrices)is not a
. 2,2

semi-non-support operator, it is obvious that semi-non-support operators
-are indecomposable non-negative matrices. Conversely, a indecompo-
.sable non-negative matrix 7' is a semi-non-support operator. Because,
if T is mnot a semi-non-support operator, then there exist two
1 (j=’i0) _

0 (i, =

1 .Zk . m ‘ y Y . m
y=11 E%q&kz; and (T™e,|e, > =0 for all m. Put J={j; (T™e,|e;>=>0

for some m}. If J=¢, then the subspace generated by {e;,} is invariant
under 7. If J=+¢, then ¢+=J & {1,.--,n} and T leaves the subspace
generated by {e;; j&J} invariant. These contradict the indecompo-
sability of 7. Similarly, in the space [, (1<<p<Co0) with natural order
the notions of semi-non-support operators and indecomposable positive
.operators in the sense of F. Niiro [7] coincide.

LEMMA 1. Let E be a finite-dimensional linear space, and the positive
cone K be minihedral and have at least one interior point. Then the no-
‘tions of strict mom-support operators and mon-support operators coincide.

PROOF. If the cone with non empty interior is minihedral then

‘there exists a ‘base {e,-.--,e,} of E such that K:{ﬁcjej; c; =0},
i=1

-elements e, e,, t,#k, such that e, ={x;}, z,=

‘Therefore, the space FE is topologically order isomorphic to the n-
-dimensional Euclidean space with natural order. Hence lemma 1 is
proved.

13) <x|y> denotes the inner product of x={x;} and y={y;} i.e. <x|y>= f} XY
j=1
14) See, for example, Sz. Nagy [6]. !
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REMARK. If the positive cone with non empty interior is not
minihedral then even in a finite dimensional linear space lemma 1 ‘does
not hold. For example, let E be a 3-dimensional Euclidean space
ordered by the Lorenz cone K, i.e. K={(x, 2, @,); #,=>~/22+a2} and T
be the operator represented by the matrix

1 0 0

(0 cpsﬁ —sin 6)

0 sinf@ cosé
where 6/x is irrational. Then 7T is a non-support operator but not a
strict non-support operator.

It is obviously seen that the condition for 7" to be a semi-non-
support operator is equivalent to the following condition: there exists
a number A>r(T) such that TR(A)x is a non-support point of K for
each nonzero xz&K. Therefore, a quasi-interior operator'® is a semi-
non-support operator. If the positive cone K has a non empty interior
then the notion of semi-non-support operator coincides with that of
quasi-interior one. Also, if E is a space [, (1<<p<Co°) with natural
order, the above two notions coincide. :

LEMMA 2. If there exists a semi-non-support operator T im K with
respect to K then the positive cone K 1is total in E.

PrROOF. Let E, be the smallest closed linear subspace including
K. If E+E, then there exists a nonzero continuous linear functional
f, such that f,(x)=0 whenever x&K. Since f,cK* and T is a semi-
non-support operator, for the linear function f, and for each nonzero
x&K there exists a natural number n=n(x, f,) such that f,(7"x)>0.
But T"x<=K and f(T"x)=0, which is a contradiction. Thus we have
E =FE.

LEMMA 8. Let P be a bounded positive projection and T leave PE
twvariant. If x, is a mon-support point of K then Px, is a non-support
point of PKin PE. If T is a semi-non—support operator wn K with respect
to K then the restriction of T to PE is a semi-non-support one vn PE with
respect to PK. If T is a non-support operator in E with respect to K then
the restriction of T to PE 1is a mon-support one in PE with respect to PK.
If T is a strict non-support operator im K with respect to K thewm the
restriction of T to PE is a strict mon-support one inm PE with respect to
PK.

PROOF. For each linear functional f, in (PK)*, f,P is a linear
functional in K* whence all the assertions of lemma 3 obviously follow.

'15) H. Schaefer defined a quasi-interior operator as follows [7]: An element u is
quasi-interior if ueK and {y;0=y=u} is total in E, and T is quasi-interior to K if
there exists a number A>r7 such that TR({)x is quasi-interior to K for each nonzero
xeK.
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§ 4. Properties of semi-non-support operators. Throughout the
sections 4 and 5 we shall assume that an operator is positive and its
resolvent R(A, T) has the point 2=7r as its pole. In this section, we
shall analyze ‘the condition (A)'® and, as a generalization of the result
of Theorem A, show that the necessary and sufficient condition for an
operator 7 to be a semi-non-support operator is (A) and »(7')>0.

Let the point 1, (=C) be a pole of the resolvent R(1, T') with the

expansion i A, (A—2)" at A=2,. Then the following properties are well

n=-—K
known :
(4.1 A_,—=lim (A—2)*R(2) and R(z):i% for [2|=>n(T).
22 n=0
(4.2) A _,=(T—aJ)'P=P(T— )
where (=1, --- , k and P=—21E—S R(X)d2 is a bounded projection (r is a
7

positive oriented sufficiently small circle enclosing 2,).
(4.3) A_FEcix; Te=2x}CPE.

(4.4) If K is total then there exist a nonzero &K and a nonzero
f&=K* such that Te=rx and T*f=rf respectively'”.

Now we shall present theorem 1.

THEOREM 1. Let K be total and T be a positive operator whose resol-
vent R(2, T) has the point A=r(T) as its pole. If every proper vector cor-
responding to r(T) lying in K is a non-support point of K then R(Z, T)
has a pole of order 1 at A=v(T) and further the proper spaces correspond-
ing to proper value r(T) of T and T* are ome-dimensional.

.PROOF. Let R(2, T) have a pole of order k at A=r(T)=r, i.e.

R(, T)= 3)I,(a—r)y", I_,#0. Then R(2, T*) also have a pole of order
n=-k

k at 2=r. By (4.1), I'_, is positive and by (4.3) and (4.4) we have

(4.5) {0}y _ KC{x; Te=rx, c=K}C PENK

and

{0} =£{f; T*f=rf, fEK*}C P*E/\K*.

From these facts and the assumption, there exist 2z, &K, x,#0 and
fLEK*, f,#0 such that I'_,x, is a non-support point of K and T*f,=7f,.
Therefore using (4.2), (4.5) we have .

16) See the introduction.
17) We shall remark that if K is closed, proper and total, then K* is closed, proper
and w*-total.
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0<<fo(I" o) =S o(P(T —rI)e'w,)
=(T* —TI)k‘lP*fo(xo)
=(T*—rIy-'f (x,) .

Hence, k£ must equal to 1. That is, r is a pole of order 1 of R(X, T).
Therefore I'_,=P is a bounded positive projection. By (4.3) and (4.5)
we have
{x; To=rx}=PE

and _ _

Oy#I' | K={x; Te=rx, x=K}=PENK=PK.
From the assumption and lemma 3, every nonzero element of PK
is a non-support point of PK. Since PE is a closed subspace and
PK=PENK, PK is a closed proper cone in Banach space PE. Here,
we shall use the following result by E. Bishop and R.R. Phelps [1:
Theorem 1]; if K is a closed convex subset of a Banach space E, then
the support points of K are dense in the boundary of K. Therefore,
the boundary of PK must be {0}. Since PK is closed and proper in PE,
PE is one dimensional. Let PE={ax,; a&=R} where x, is a non-support
point of K. Then, putting f(x)=a for Pr=ax, we have f,&=K*, f,#0
and Pr=f,(x)x, whence P*f=f(x,)f,. Since the point i=r is also a pole
with order 1 of the resolvent R(2, T*), P*¥E is the proper space cor-
responding to r, of T*. Thus the proper space is one-dimensional. This
completes the proof of theorem 1.

Let (A)) and (A,) be the following conditions for T':

(A,) Every proper vector corresponding to the proper value 7(71')
lying in K is a non-support point of K and every proper vector cor-
responding to #(7T') lying in K* is strictly positive.

(A,) The proper space corresponding to the proper value »(T') is a
one-dimensional subspace of E passing through a non-support point K and
there exists a strictly positive proper functional corresponding to (7).

From theorem 1, we immediately see that (A)=(A,) and (A,))=(A).
Therefore we obtain the following corollary :

COROLLARY 1. Let K be total. Then the three conditions (A), (A))
and (A,) are equivalent to each other.

In the proof of theorem 1, the totality of K is used only to prove
the existence of nonzero proper vectors in K and K* Therefore
corollary 2 follows. ,

COROLLARY 2. If T satisfies the condition (A), then its resolvent
R(2, T') has a pole of order 1.

Here we shall obtain theorem 2 as a generalization of Theorem A.

THEOREM 2. Let T have the resolvent R(A, T') with the point i=r as
ats pole. Then, holds the following logical relation :

V(T)>O

T 1s a semi-non-support operator < T satisfies (A).
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PrROOF. =: Let T be a semi-non-support operator and « (resp. f)
a proper vector corresponding to r in K (resp. K*). Then, for &K and
for every nonzero f&K* (resp. for every nonzero x&=K and for f&K*),
there exists a natural number n=n(z, f) for which 0<<f(T"x)=r"f(x).
That is, >0 and f(x) is always positive for every nonzero f&=K*
(resp. x&=K). Hence, z is a non-support point of K (resp. f is strictly
positive on K). Then T satisfies the conditions »>0 and (A). By
lemma 2 and corollary 1 of theorem 1, 7 satisfies the condition (A).

«: Let T satisfy the condition (A) and »(7)>0. Then we can
assume r(7) to be 1. By corollary 2 of theorem 1, the point 1 is a
pole of order 1 of the resolvent R(2, T'). Let iPn(Z—l)", I'_,#0 be

n=-1
the expansion of R(4, T) at 2=1. Then, by (4.1), P=TI"_, is a positive
projection onto the proper space corresponding to 1 and

(4.6) P=lim (£~ 1R(E) .

Since strictly positive proper vector f, corresponding to 1 of T* exists,
Jo(Px)=P*f (x)=f,(£)>0 for every nonzero =K. Therefore Pxr+0 and
Prxe=K which implies Px is a non-support point for every nonzero
x<=K. Thus, if x is a nonzero element in K and f is a nonzero func-
tional in K¥*, then f(Px)>0. By (4.6), for f(Px)/2Ilz]l [[fII|IT])>>0,
there exists £>1 such that

e APr)
HE=DEEO =PI <grgmzmm

whence

F{(E— 1) TR(E)x— Pay | = f{(£ — ) TR(E)w— TPz} | < f(lgx) .
Tn

From TR(&):%T

n=1

, by (4.1),
o<f(—123“)-<(5—1)2%.

Thus, there exists a natural number » such that
S(T"x)>0

which completes the proof of theorem 2.

REMARK 1. TUsing the corollary 1 of theorem 1, we see that this
- theorem includes a generalization of the result of Theorem 13 in S.
Karlin [4] to the case where the positive cone has not necessarily a
non empty interior.'®

- REMARK 2. F. Niiro obtained a result corresponding to this

18) T is a semi-non-support operator if and only if, for each nonzero x£K and

T4... 7
each nonzero fe K*, there exists a natural number n such that f(——_—ll—n+—T—x>>0.
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theorem in the space [, (1<<p<Coo) with natural order [7: Theorem 1].

Combining corollary 2 of theorem 1 and theorem 2, we have
immediately the following corollary.

COROLLARY. If T is a semi-non-suppor operator them T satisfies the
conditions >0, r is a pole of order 1 and (A).

REMARK. This corollary corresponds to Theorem 2 in H. Schaefer
(8]. It is seen from the .corollary that the supplementary conditions
a), b) and ¢) for Theorem 2,3° in H. Schaefer are unnecessary.

§ 5. Properties of non-support operators. In the previous sec-
tion we had the result that an operator 7T is a semi-non-support
operator if and only if the operator 7 has the properties >0 and (A)
corresponding to the properties (a) in Theorem A. In this section
we shall consider a generalization of the result of Theorem B. It is
immediately seen that a semi-non-support operator .does not necessarily

0 1 20)
1o -

First, we shall obtain a necessary condition which follows from the
condition >0, (A) and (B).

THEOREM 3. Let T be a positive operator whose resolvent R(2, T) has
the point 2=r(T) as its pole. Then, holds the following logical relation :

T .
T satisfies (A) Z;gz d)(>B(; = T 1s a non-support operator.

satisfy the condition (B)¥ from the simple example (

PROOF. We can suppose r to be 1. In the same way as the proof
of “< " of theorem 2, the leading coefficient P=I"_, of the expansion
of the resolvent at 1=1 is a bounded positive projection onto the proper
space and Px is a non-support point for every mnonzero x=K. Put
‘ T=PT and T,=(I—P)T.

Then
T,=PT=TP=P, TT,=T,T=0 and T"=P+T}.
By the condition (B), we have

r(T,) =lim~/||[ TP <1.
Therefore [|T7||—0 (n—0) whence f(Iyx)—0 (n—o0) whenever x&F
and f&E*. Let x be a nonzero element in K and f a nonzero element
in K*. Then f(Px)>0 from which follows that there exists a natural
number n,=n(x, f) such that ]f(TZ"x)|<~_f(Z2j—m) whenever n>mn, whence

AT") =f(Pa)+AT;x)>0 .

19) See the introduction in this paper.
20) See H. Schaefer [7: p. 1018].
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That is, T is a non-support operator which completes the proof of
theorem 3.
By theorem 2 and theorem 3, we obtain the following corollary.
COROLLARY. Let T satisfy the condition (B). Then, for T

r(T)=0 = to be a mon-support operator

@ 1Y
to be a semi-non-support operator.

In general, the condition that T be a non-support operator does
not imply the condition (B)*’. The following theorem is a generali-
zation of the result obtained by 8. Karlin [4: Theorem 12] to the case
where the positive cone K has not necessarily non empty interior.
Let (C) be the following condition for T':

(C) The spectrum of 7 on the circle |2|=7(T) consists only of
poles and each proper space corresponding to proper values on the
circle |2]=r(T) is finite-dimensional.

THEOREM 4. Let the positive cone K be normal and minthedral and
the dual cone K* be mormal. Suppose an operator T satisfy the condition
(C). Then, holds the following logical relation :

T is a non-support opeqf‘ator' = T satisfies (B).

PROOF. Since T is a semi-non-support operator, the spectral radius
r is positive by theorem 2. Therefore we may suppose r=1 without
loss of generality. Since a pole is an isolated point, there are at
most finite poles 1=2, ---, 2, on the circle [A|=1. Let E|, be the sub-
space spanned by all the proper vectors corresponding to 2, -, 4,.

First step: We shall show that there exists a positive projection
P onto E,. By corollary of theorem 2, the point i=1 is a pole of
order 1. It is known’ that if K and K* are mormal then the order
of a pole on the circle |A|=1 does not exceed the order of the pole at
A=1. Therefore, 2, ---, 4, are also poles of order 1. Put

— 1 .'_' sen
Pj_WSTjR(A)dX for each j=1, ... , v

where 7, is a sufficiently small circle enclosing 2,, Then P, is a bounded
projection onto the proper space corresponding to i; by (4.2) and (4.3).
It is easy to see that

(5.1) PP;=P;P,=0 for i)
and
(5.2) P,T=TP;=2,P;.
Let
P=>P,.
Jj=1

21) See remark 1 of theorem 4. .
22) See, for example proposition 1 in H. Schaefer [8].
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Then P is a bounded projection onto E,. Furthermore, since P=
lim 7" P is positive.

’ Second step: Let K,=PK and T, be the restriction of T to E,=PE.
‘We shall prove that 7T, is a strict non-support operator in K, with
respect to K,. Since PT'=TP, T, leaves E, invariant, by lemma 3
T, is a non-support operator with respect to K, in E,. By lemma 2,
K, is total in E,. Since E| is finite-dimensional K, has non empty
interior in E,. The positivity of P implies that K =KNE, and K,
is closed, proper and minihedral cone. In fact, for each =z, y&K,
P(sup {z, y}) is the sup {x, y} in E,. Therefore, by lemma 1, 7, is a
strict non-support operator. Since K, has non empty interior, 7, is
~ a strongly positive operator in E,. Using P=1lim T™, strong positivity

k—oo

of T, and the fact that if T"x, is an interior point of K, then
(T, 5 5=1,2,---} lies at a positive distance from KpP*?, we have
K?={0}. Therefore E,=PFE is one-dimensional. Hence P=P and P;=0
(j=2,--+,v). That is, T has only one spectrum A=1 on the circle
|2|=1. This completes the proof of theorem 4. ‘

In the first step of the above proof we did not need the condition
that K is minihedral and in the second step we have made use of the
condition to obtain the fact that T, is a strict non-support operator.
Therefore, we have the following corollary :

COROLLARY. Let K and K* be mormal and T satisfy the condition
(C). Then, holds the following logical relation :

T is a strict non-support operator = T satisfies (B).

Combining theorem 3, its corollary and theorem 4, we get theorem
5 which is a generalization of Theorem B. A _

THEOREM 5. Let K be minihedral and mnormal and let K* be also
normal. Suppose T satisfy the condition (C). Then, holds the following
logical relation :

. r(T)>0
T 1s a non-support operator = {T satisfies (A) and (B).

_ REMARK 1. In theorem 5, the assumption that the positive cone
e minihedral is indespensable. Indeed, the example mnoted in the
remark of lemma 1 shows that the operator represented by the matrix

1 0 0

0 cosfd —sin 0)
'\0 sinéd cosé

where §/z is irrational, satisfies the condition (C) and is a non-support

23) This equation is noted in Krein-Rutman [5: p. 288] (replace A by T) where they
obtained the equation using only the fact that T has no spectral value except for finite
proper values on the circle |1|=1 and the above equations (5.1) and (5.2).

24) See Lemma 6.1 in Krein-Rutman [5]. » :
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operator. Further, the Lorentz cone K which is identical with K* is
normal. That is, all the assumptions in theorem 5 except for the
minihedrality of the positive cone K are satisfied in this example.
However, the spectrum of the operator on circle [A|=1 is {1, e*¥}.

REMARK 2. In the case of [, with the natural order, theorem 5
has been concluded by F. Niiro [7: Theorem 5] without supplementary
condition (C) as follows:

. r(T)>0
to be a non-support operator < {(A)
| (B)

After this manuscript was written, the following three proposi-
tions are obtained :

PROPOSITION 1. If T is a semz non-support operator and x is a non-
support point of K, then Tx is o non- support point of K.

PROOF. As T*in for every mnonzero f—=K* we have f(Tx)=.
T*f(x)>0. '

PROPOSITION 2. T is a semi-non-support operator if and only +f T
18 posttive and, for each monzero x&K and for each monzero fEK*, there
exists an infinite set of natural numbers m satisfying f(T™x)>>0.

PROOF. Suppose 7 be a semi-non-support operator. Let 2&K,
- 2#+0 and f&K*, f+0. Then, for every &é>r(T), TR(f)x is a non-

support point of K. By proposition I, f(T"R(E)x):if(T”*"x)/E””>0.
. e n=0 ;

That is, there exists an infinite set of m satisfying f(T™x)>0.
PROPOSITION 3. T s a strict mon-support operator, if and only iof T’
is positive and for each monzero 2K there exists a natural number
n=n(x) such that T"x is & non-support point of K.
PROOF. It follows immediately from proposition 1.
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