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Let k& be a field of non-zero characteristic p that contains a finite
field P with ¢=p’ elements. We denote by k, the ring of all nxn-
matrices with elements in k and by C? the matrix (¢}) when a matrix
C=(c;) is given. For a non-singular matrix M in k, the matrix equa-
tion X?=MX is called a generalized Artin-Schreier equation. If
A?=MA holds for a non-singular matrix A in £,, where £ is an alge-
braic closure of %k, then A is called a non-singular solution of the
equation. By adjunction of all elements of A to k¥ we obtain a Galois
extension K of k which is associated with the matrix M. It is known
that the Galois group & of K/k is isomorphic to a subgroup of GL(n, P)
(cf. Theorems 1 and 2 in [1]). It is desirable, however, to study more
precisely the relationship between the form of the matrix M and the
representation of the Galois group &. In the present note we shall
give a theorem regarding this question and apply it to the problem
of constructing Galois extensions over k.

Let o be an arbitrary P-subalgebra of P, and put G(v)=o0nGL(n, P).
Then G(o) is a subgroup of GL(n, P) if G(o) is non-empty. The P-
algebra o can be extended to the algebra o,=kXRo over k. If we put
Gr(0)=0,NGL(n, k), then it is clear that G,(0)NGL(n, P)=G(0). A non-
singular matrix M in k, can be put into the form M:ﬁ] a,u;, where

=1

U, -+, U, are matrices in P, linearly independent over P and a,---,a,
elements in k linearly independent over P. Then w,---,u, generate
an algebra o over P and M belongs to G,(v). We can readily verify
that o is uniquely determined by the matrix M. We first prove the
following

THEOREM 1. If a non-stngular matriz M belongs to G (o), then the
Galois group & of the Galois extension K over k assoctated with M is iso-
morphic to a subgroup of G(o).

Before entering upon the proof of this theorem we need the
following

LEMMA. Let K be an arbitrary field contaiming P.

(A) Gg(o) is non-empty if and only if o contains a unit matrix.
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(B) If Gg(o) is mon-empty, then Gy (o) is a subgroup of GL(n, K).
We have only to show that if AcG4(0) then A'&Gg(0). Since o,
is of finite rank over K, there exists the least integer s such that

St Ai=0, 6K, ¢,#0.
i=0 :

s—1
Here we have ¢,0, since otherwise we would have >J¢;,;A*=0. Then

=0

I:AE(—ciﬂ,l/co)Aﬁ where [ is the unit matrix. Since A‘cpo, we have
=0

A& Gg(0). ,

Proof of Theorem 1. Let u,---,u, be a P-basis of o and consider
the matrix

(1) Y= ; YUy,
where y, ---, ¥, are quantities algebraically independent over k. Since

o contains the unit matrix I by the lemma, we can put I=>¢u,, ¢ P.
By specializing ¥, to ¢, we see that Y is a non-singular matrix. We
put =k, ,y,). Since Y?Y'cG;(0) by the lemma, we can put

/

N=YtY 1= i}xiui, x,E2 .
i=1

1f we put K=#k(x,---,2,), then K is a subfield of ¥. Now Y is a non-
singular solution of the generalized Artin-Schreier equation X?=NX
with a matrix N in K,. Substituting (1) into Y?=NY, we obtain the
relations

r r
2 . Y=y, w0, i=1, ., 7,
j=1 s=1

where we put uu,=> 0w, oy =P. From (2) we infer that y,---,v,
are algebraic over K. (cf. the proof of Proposition 3 in [1]). Then
%Y is finite over K and therefore z, ..., x, are algebraically independent
over k. Let & be the integral closure of the polynomial ring
R=Fk[z,---,%,] in 2. Then & is Noetherian since R is Noetherian.
We contend that y, all belong to . In fact, choose a non-zero ele-
ment ¢ in R such that cy,=5, t=1,...,r. By using (2) repeatedly we
see that cy* =X holds for 1=0,1,2,.... We consider the ideal 2, in
X generated by ey, ¢y?, -+, cy?’. Then we have a sequence of ideals:
A, - W, ---. Since & is Noetherian, there exists U, such
that A,=A,,,, whence it follows that y, is integral over ¥ and hence
¥,&%. Now we put M= a,u,;, o,k and consider the k-homomorphism
¢ of R into k, which maps », on a,,7=1, ..+, 7. According to the theory
of places, the homomorphism ¢ can be extended to a homomorphism
of ¥ into the algebraic closure 2 of k. We denote this homomorphism
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also by ¢ and put ¢(y,)=«,; 1=1,-.-,r with ,&82. Then A=Y au, is
a solution of the equation X¢=MX. Since (det Y)?'=det N holds, we
have (det A)?'=det M=+0. This shows that A is non-singular and
consequently AcGy(0). Now it is knmown that for =@ we have
cA=AA(0) with a matrix A(c) in P, and that A(s) yields an isomorphic
representation of @ in P,. Since both A and ¢4 belong to Gy(0), we
have A(c)>Ggy(0) by the lemma and hence A(c)&G(p). Thus @ is iso-
morphic to a subgroup of G(o). :

THEOREM 2. We assume that Hilbert's iweducibfility theorem holds for
It. Let o be a P-subalgebra of P, that contains the unit matrixc. Then there
exist infinitely many matrices M in G,(o) such that the Galots group of the
Galois extension associated with M 1s isomorphic to G(o).

Let u, -+, u, be a P-basis of o and «,.--,x, be quantities alge-
braically independent over k. We consider the non-singular matrix
N=2>xu;. We observe, as in the proof of Theorem 1, that there exist
elements y,, ---, ¥, such that Y= y,u, is a non-singular solution of
the equation X=NX. We put K=k(x, --,,) and denote by L the
Galois extension of K associated with N. L is obviously contained in
Ky, -+ ,¥,). Since Y?Y'=N holds, we see that K is a subfield of
k(y,---,y,) and therefore KcLCk(y,---,¥,). This also verifies that
Yy, -+, Y, are algebraically independent over k. Now we shall prove
that the Galois group of L/K is isomorphic to G(v). For any matrix
v in G(o) we put

UV = Yzlij(v)uj’ /zij(v)ep; =1, ., 7.
=

Here the matrix (1,(v)) is non-singular, because v, .-+, u,v form a P-
basis of n. We associate v with the k-automorphism o, of k(y, ---, %)
determined by
3) oY= 2, A0y, t=1, -, .
j=1

We readily see that in this way G(o) is isomorphically mapped onto a
group @ of automorphisms of k(y,---,¥,). From (3) we have

0,Y=Yv, o0,Yi=Yw,
0,N=0,Y4(0,Y)"*=(Yw)(¥v) =N,

whence it follows that o,2,=x,. This verifies that every automorphism
of @ leaves all elements of K fixed. By associating o, with the auto-
morphism of L/K induced by o¢,, we obtain a homomorphic mapping of
® into the Galois group of L/K. But, since ¢,Y=7Y holds only when
v is the unit matrix, this homomorphism is really an isomorphism.
Thus, taking Theorem 1 into consideration, we find that the Galois
group of L/K is isomorphic to G(p). Now it is easy to prove Theorem
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2 by the well known technique if we consider the fact that K is
purely transcendental over k.

It is to be noted that Theorem 2 is a generalization of Theorem

9 in [2].
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Addendum to the author’s previous article

Theorems 5 and 7 in [2] have already been proved by Ore in [3].
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