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Introduction

The concept of generalized Artin-Schreier equation was introduced
in the author’s previous article [2]. In the present paper we mean by
generalized Artin-Schreier equation one that is slightly more general
than that which was treated in the above-mentioned. At the begin-
ning we shall briefly sketch the fundamental facts whose proofs are
precisely similar to those of the corresponding results stated in [2].
Let k be a field of non-zero characteristic p. We put ¢=p” and assume
that primitive ¢—1-th roots of unity are contained in k. The subfield
of k& which consists of all elements ¢ with ¢?=¢ shall be denoted by P.
Further we denote by k, the ring of all nxn-matrices with elements
in k. When a matrix C=(c;) is given, we use the notation C? for the
matrix (¢;;). A matrix M, in k, is called g-similar over k to a matrix
M,, if there exists a non-singular matrix C in k, such that M,=C'M C~".
Let M be a non-singular matrix in k,. Then the matrix equation
Xe=MX is called a generalized Artin-Schreier equation. If A?=DMA holds
for a non-singular matrix A in £, where £ is an algebraic closure
of k, then A is called a mon-singular solution. By adjunction of all
elements of A4 to k we obtain a finite Galois extension K of k, which
is determined uniquely by the class of matrices ¢-similar over k to
M, and K is called the extension of k associated with M. If G is the
Galois group of K/k and o=@, then for a non-singular solution 4 we
have cA=AA(c), where A(c)=P,. The matrices A(s) yield an isomor-
phic representation of G in P, and this is called the representation of
G associated with M. Now the theorems corresponding to Theorems 2
and 3 in [2] can be stated in the following manner.

THEOREM A. A class of matrices q-similar over k to M determines the
tsomorphic representation of the Galois group associated with M uniquely to
within equivalence. -

THEOREM B. For a finite Galois extension K of k and for a class A
of equivalent isomorphic representations in P, of the Galois group of Kk
there always exists a class of q-similar matrices wn k, such that this 1is
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determined uniquely by K and A. ‘

The fact that these two theorems hold gives rise to the problem
of finding a matrix of normal form, to which Section 1 is chiefly
devoted. It deserves our notice that this can be solved by using the
theory of semi-linear transformation, because the instances which
necessitate the use of this theory are yet little known. Further we
show in Section 2 that our method is more suitable for studying the
nature of Galois extensions than that which was explained in [2]. In
addition, it enables us to prove the theorem that there exist Galois
extensions whose Galois groups are isomorphic to a given group of a
certain kind, provided Hilbert’s irreducibility theorem holds for k.

1. Matrices of normal form

In view of the fact that we can deal with ordinary similarity of
" matrices by considering k-modules, it is natural to do the same in our
case. Let MM be a k-module of rank n and T be a left operator of 9
which satisfies the following conditions

Tu+v)=T(u)+ T(v), for w,v&EM
T(cu)=c*T(u), for uweM and c<k.

Let u, -+, u, be a basis of Y and put
Tui:i Myt m;; k.
i=1

Then 7 is completely determined by the matrix M=(m;). If we take
another basis v, .--,v, of W such that

V= Z‘ Cﬁuj ’ CUEk

=1
and if we put

Tv,= EI m 50, , M=), C=(¢cy) ,

then we have M’ =C'MC? and hence the transpose of M is ¢-similar
over k to that of M. Next we consider polynomials > a,2* of a vari-
able x over k, for which we define multiplication by distributive law
and

axibe! = abTxi+ .

These polynomials form a non-commutative ring k<) which has no
zero-divisors. Then IR becomes a k(x)-left module by defining

\

(é}o aixi)us (Zn] aiTi) u .

=0
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Here we note that T is not necessarily a semi-linear transformation
of M. Because the mapping c—c? is not an automorphism of & unless
k is perfect. Moreover every left ideal in k¢x) is principal but not
necessarily so is a right ideal. This fact hampers us from using the
theory of elementary divisors. To overcome this difficulty we consider
the maximal purely inseparable extension k* of k.

PROPOSITION 1. Let M be a non-singular matrixz in k,. Then, if r 18
sufficiently large, M is a matrixz in k,, which is q-stmilar cver k* to M.

Since k* is purely inseparable over k, there certainly exists a
positive integer » such that M? is in k,. Now we have M¢=M MM,
M? =M% M4 (M%) ' and so on. Hence M is ¢-similar to M? by the
transitiveness of ¢-similarity.

PROPOSITION 2. If two mon-singular matrices M, and M, in k, are q-
similar over k¥, then they are also gq-similar over k.-

Let M,=C‘M,C"', where C is a non-singular matrix in k,, and X
be the extension of k obtained by adjoining all the elements of C to
k. If ¥ were distinct from k, then the exponent of inseparability of
2% over k would be less than that of 3. Since we have C=M,"'CM,
and since all the elements of the matrix on the right-hand side belong
to 3¢ we have a contradiction and our proposition is proved.

Now that the above two propositions have been established, we
have every reason to expect that the present method will lead us to
our destination. First we extend 9t to the k*-module M* with the
same basis. Then 7T can be extended to a left operator of ¥, which
is also denoted by 7. Since the mapping c¢—c? is an automorphism of
k*, T is a semi-linear transformation of IM*.. Here we shall call T
regular if T is an automorphism of IMM*. The matrix M associated
with T is non-singular if and only if T is regular. Next we extend
kK xy to k*(x). Then we see that every left ideal as well as every
right ideal in k*(z) is principal and that IM* becomes a k*(x)-left
module. Now let us use the abridged notation o=k*(). By a sub-
module of M* we understand an o-submodule of IM*. A submodule N
of IM* is called cyclic when it is generated by a single element u. All
elements 7&o with ru=0 constitute a principal left ideal oa in o,
which is called the order of u, and o/oa is o-isomorphic to N. We
know that of is also the order of a generating element of N if and
only if o/of 1is o-isomorphic to o/oa. In the following we have to
consider two cases separately: either k is infinite or finite. It is
obvious that when % is finite we have k*=Fk and IM*=9N.

LEMMA. If k s infinite, every two-sided ideal  tn 0=k*{x) is gener-
ated by a rower of =x.

It is known that there exists an element a=S$§ such that §=oa
=apo. Let ¢ be an arbitrary non-zero element of k¥ Then ca=ad
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holds with dck*. If a were not a power of z, then we would be
able to put ;
' a=q,xL" - +a,,x",

where r<m and a,==0, a,==0. Then
ad=a,d’x" + - 4+, d" e = ca = c(a,x" + -+ + A, L™ .

From this follows that ¢ "=c¢ for every non-zero element c¢=k*, which
contradicts the assumption that 4 be infinite.

' PROPOSITION 3. Let T be a regular semi-linear transformation of ¥,
If k 1s infinite, the k*{(x)-mcdule IN* is cyclic and the order of its generat-
ing element 1s generated by a rolynomial mot divisible by x. If k s finite,
then Y 1s a direct sum of cyclic submedules ,;, 1=1, ---, r, where the order
of any generating element w, of YN, is generated by a polynomial not divisi-
ble by x. Moreover, when r>1, we can choose generating elements u, of I,
such that the order of w, is a total divisor of the o'r’der of ;.-

By the theory of elementary divisors 9* is a direct sum of cychc
submodules M,, i=1, -.-,», such that the order oa, of a generating
element %, of N, is a total divisor of the order o«,,, of a generating
element u,,, of W, ;. ([4], p. 44). Here we can assume that oa,==p,

i=1,...,r. If «, were divisible by =z, then, putting «,=2zp,, 8,0, we
Would have pu,=F0 and au,=xzpu,=Tpu;=0. This contradicts the
assumption that 7 be regular. Hence «,---,«, are all not divisible

by «. When k is infinite we have to prove that r=1. If it were not
the case, oa, would be a total divisor of ow,. Then there would exist
a two-sided ideal  such that oa DS‘DOCK“ where (=o. Since by Lemma
& is gemnerated by a power of z, «, is d1V1s1ble by @, which contradicts
the above result.

THEOREM 1. Let k be a field of non-zero characteristic p that contains
q-1-th primitive roots of unity. If k s infinite, a non-singular matric M
n k, is q-similar over k to a matriz of the form

0 1 0 eeeeerenens 0
0 0 T ceeeenannans 0
(e M =]  verrnans [P
0 0 cevevennnns 1
—a, —a, . SRRREREEE Qy—y

..................

(1.2)
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where each Mi' 18 a matriz of form (1.1).
Let T be the regular semi-linear transformation of the k*-module
IM* determined by the transpose of M. Then by Proposition 3 the

k*(x>-module M* is a direct sum of cyclic submodules N, i=1, ..., r.
We can choose a generating element u, of 9, such that the order of
»w;, is oa;, with a;,=a"4..-+a,0+a,, a,;=k* Then wu, xu, . ¥ u,

constitute a k*-basis of WN,. If k is finite, then k*=Fk, M*=I and
M is g-similar over k to a matrix of form (1.2). If k£ is infinite, then
r=1 by Proposition 3 and M is ¢-similar over k* to a matrix of the
form

1 O cevvrenns 0
0 1 cerenennn 0
B T
0 0 0 ceeennnnn 1
_a'o* _al* ~(12* ...... an_l*
where a,*<k*. If a*’=k, 1=0,.--,n—1, then we observe that the

matrix M'=M*¢ is g¢-similar over k* to M by Proposition 1. Hence
M' is g¢-similar over k to M by Proposition 2 and the proof is con-
cluded.

If a non-singular matrix M in k, is of form (1.1), then it is called
a matriz of mormal form and the equation X?=MX a mormal generalized
Artin-Schreier equation. It is to be noted that, when M is of form (1.1),
the k(xd-module M determined by the transpose of M is cyclic. In
fact, there exists an element u in the k(x)-module 9 such that
u, U, -~ , " u form a k-basis of Y. Morever the order of u is the
left ideal generated by the polynomial z"+a,_ 2" '+-.-+a, This poly-
nomial is called the characteristic rolynomial of M (with respect to k(x)).

REMARK. When k is finite, we can choose the matrix (1.2) such
that the characteristic polynomial of M,,, is divisible by that of M,
1=1,.,r—1.

PROPOSITION 4. Let M and N be matrices of mormal form in k,, and
a and S be the characteristic polynomials of M and N respectively. M 1is
q-similar over k to N if and only if there exists r<k<x) such that fr is the
least common multiple of a and r and that « 1s relatwely prime to 7.

We put o=Fk{x). According to Ore, o/oax is o-isomorphic to o/og if
and only if there exists r in o such that oy oa=c and orn\oa=op7.
This verifies our Proposition. ([4], p. 33).

A mnon-singular matrix in k, is called g-reducible over k, if it is ¢-
similar over k£ to a matrix of the form

M, 0
‘ ]VI.a ZW? ’
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If M is not g-reducible over k, it is called g-irreducible over k.

PROPOSITION 5. A mnon-singular matriec M of normal form in k, s
g-irreducible over k if and only if the characteristic polynomial of M with
respect to k(x> 1s wrreducible over k.

We note that M is g-irreducible over k if and only if there exist
no proper submodules of 9. If « is the characteristic polynomial of
M, then pa is the order of a generating element of M. We can easily
verify that 9 has no proper submodule if and only if « is irreduci-
ble. This concludes the proof of our proposition.

A non-singular matrix M in k, is said to be ¢-decomposable if it is
g-similar over k to a matrix of the form

M, 0
(%2
M is called g-indecomposable if it is not g¢-decomposable.

PROPOSITION 6. Let M be a non-singular matriez of normal form in k,
and «a be the characteristic polynomial of M with respect to k(x). If a 1is the
least common multiple of £ and 7 such that B s relatively prime to 7, we
put a=r*g=p*%r. Then M is g-svmilar to a matrixz of form (1.3), where
B* and r* are the characteristic polynomial of M, and M, respectively.

Let % be the generating element of 9N whose order is oa. Since
-pp\Uor=o0 and ofN\or=o«, W is the direct sum of two submodules
which are generated by pu and 7ru respectively. Furthermore the
orders of fu and ru are or* and op* respectively. This completes the
proof of our proposition. - ‘

COROLLARY. Let M be a non-singular matriz of mormal form in k,
and « be the characteristic polynomial of M with respect to k{xy. M s g-
indecomposable if and only if a 1s not a least common multiple of two
elements which are of positive degree and relatively prime to each other.

PROPOSITION 7. Let M be a non-singular matrie of mormal form in
k, and « be the characteristic polynomial of M with respect to k<{x). We
put a=mr,-x, where m; is wwrreducible im k{x) with deg =,=mn,. Then M
18 q-similar over k to the matrix '

M, 0 0 eenen
Oeenees 0
......... M, 0
(1.4) , 01
Oueenen 0
0 | eeerenens M, e
Oeennen 1
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where M, is a q-irreducible matriz of normal form in k, such that =, is
the characteristic polynomial of M,. 7
Let u be the generating element of I whose order is oa. If we

put
(1) _ pui—1 . =1
W =0 Ty e TU, 1=1,.+, M,
w, P =gz U, 1=1,.,m,,
w, "V =x""1u =1, ,m,,

then u,” constitute a P-basis of I, whence follows our assertion by
using Proposition 5.

COROLLARY. Let M be a non-singular matriz of mormal form in k,
and « be the characteristic polynomial of M with respect to k{x) such that

a=(r—a,) - (x—a,), a, k.

Then M is g-stmilar over k to a matrixz of the form

. 0 -eenee 0
a, O «evvne 0

0 Oy ovveee 0
0 0 01 «a

92 Galois extensions associated with matrices of normal form.

Let k[x] be the commutative integral domain consisting of poly-
nomials of = over k. In this section a polynomial of the form

(2.1) zn) ax?

j=0
plays an important role. By associating a polynomial o in k()
with the polynomial > a,x% in k[«], we obtain. a one-to-one mapping
¢ of k¢xy into k[z]. We can verify that ¢ satisfies the following
equalities for any two polynomials f(#) and g(x) in A<x).

(2.2) o(f(®) +9(x)) = of(®) + 99(v) ,
(2.3) o(f(®)9(%)) = ¢f(9g(%)) -

PROPOSITION 8. If a polynomial F(x) of form (2.1) is divisible by «
polynomial H(x) of form (2.1), then there exists a polynomial Q(x) of form
(2.1) such that F(x)=Q(H(x)).

We put F(x)=of(x), H(x)=g¢h(z), where f(x) and h(x) belong to kx).
There exist polynomials q(%) and r(x) in k<¢x) such that f(x) =q(x)h(x)+r()
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with deg r(x)<<deg h(x). Then by virtue of (2.2) and (2.3) we have
F(r)=pq(H(x)) +¢r(2) ,

and deg ¢r(x)<<deg H(x). Since both F(x) and ¢q(H(x)) are divisible by
H(x), we have ¢r(x)=0 and hence F'(x)=g¢q(H(x)).

COROLLARY. A polynomral f(x) of m-th degree is wrreducible in k{x)
if and only if ¢f(x) is not divisible by a polynomial H(x) of form (2.1) with
1<<deg H(x)<<q".

We shall say that ¢f(x) is ¢-irreducible over k if f(x) is irreducible
in k{x)>. Let M be a matrix of normal form in k, and f(x) be the
characteristic polynomial of M with respect to k¢x). Then we shall
call ¢f(x) the characteristic polynomial of M with respect to k[x]. The
characteristic polynomial of M is separable over k if and only if M
is non-singular. Because > a2 is separable if and only if a,=:0.
From (2.2), (2.3) and Proposition 4 we can derive the following

THEOREM 2. Let M, and M, be two matrices of mormal form wn k,
with characteristic polynomials F,(x) and F,(x) respectively. M, is g-similar
over k to M, of and only if there exists a polynomial H(x) of form (2.1)
such that the following conditions are satisfied :

(1) H(x)/z vs relatively prime to F(x)/x.

(2) Among polynomials of form (2.1) F(H(x)) is the common multiple

of F(x) and H(x) with the least degree.

We consider a polynomial F(x)= Eamw in k[z], where a,/=0 and

a,#+=0. Bince F'(x) is separable over lc 1t has exactly ¢* distinct roots
in an algebraic closure of k. If «,,---,a, are roots of F(x), then we
readily find that > p«;, 0,;&P, is also a root of F(x). Hence all the
roots of F(x) form a P-module of rank n. Thus there exist roots
a, a, -, a, of F(x) such that these elements are linearly independent
over P. Now we shall prove that the matrix

a, QU eevneeens a,

a.? AT q
(2.4) A=| % 2 %a

alqn—1 azqn—’l ...... anqn—l

is non-singular. For this it suffices to prove by induction on » that
the determinant

L @y venenenes «a,
q Tevvnnnnns q
4| @ a, a,
=
q"1 ..., q"-1
o a, a,

is non-zero. It is obvious that 4,4=0. When r<n, we assume that
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4,/40. If 4,, were zero, there would exist r,&8, 1=1, ... ,r such that
am"j———*ilnaf’} j=0,1,-.- 7.
=
‘Raising both sides to the ¢-th power we have
oy . .
a,.ﬂqJ:; 7ia,Y J=1, ., 7.

These two relations give-rise to the equation

I

ﬁ (riq_ri)aiqj:() ’ J=1, 7.

=1

Since 4,24=0, we have r,2=r, and therefore r,=P. Then «,., would be
a linear combination of «,.--,«a, over P, which is contrary to our
assumption. Hence 4,,,70. From the above argument we have im-
mediately the following '

THEOREM 3. Let M be a non-singular matriz of normal jform in k,
and F(x) be the characteristic polynomial of M. Then the matrix (2.4) is a
non-singular solution of the mnormal generalized Artin-Schreier equation
X1=MX. Moreover the Galois extension K|k associated with M is the split-
ting field of F(x). '

We note that Theorem 3 provides us with another proof of the
theorem that any non-singular matrix in £k, is associated with a
Galois extension of k.-

THEOREM 4. Let k be a field of mon-zero characteristic p, in which
q—1-th primitive roots of wunity are contained. Then every finite Galois
extension of k is the splitting field of a polynomial of form (2.1).

When k is infinite, this theorem is immediate from Theorems B,
1 and 3. When k is finite, any finite Galois extension K of k is as-
sociated with a matrix of form (1.2) by Theorems B and 1. Let K,
be the Galois extension of k associated with M,. Then we have
K cK,c-.-CcK, by the remark in the preceding section. Hence K=K,
q.e.d.

Let M be a non-singular matrix of normal form in %, In the
following we shall investigate close relationship between the charac-
teristic polynomial F(x) of M and the representation of the Galois
group G of its splitting field K/k. Let «,, .-, «, be a basis of the P-
module L(F), which consists of all roots of F(x). Further let P(G) be
the group ring of G over P. Since every element of G permutes the
roots of F(x) among themselves, ¥(F') becomes a P(G)-module, which
yields an isomorphic representation 4 of G in P,. If we consider the
matrix (2.4), we see that A is nothing other than the representation
of G associated with M.
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THEOREM 5. Let M be a non-singular matriz of normal form in k,
and F(x) the characteristic polynomial of M. The isomorphic representation
A of the Galois group G associated with M is irreducible iof and only if F(x)
18 p-irreducible over k.

If F(x) is divisible by a polynomial H(z) of form (2.1) with 1<
deg H(x)<<q", then by Proposition 8 there exists a polynomial Q(x) of
form (2.1) such that F(x)=Q(H(x)), where both H(x) and Q(x) are
separable. Then {(H) is a proper P(G)-submodule of ¥(F) and hence
A is reducible. Conversely, if 4 is reducible, there exists a proper
P(G)-submodule M of ¥(F'). It suffices to prove that there exists a
separable polynomial H(x) of form (2.1) in k[x] such that N=X(H).
Let B, -+, 8, be a basis of N over, P, where 1<<r<mn. It is evident
that all the roots of the polynomial H(x)=2"—p,"""¢ form a P-module
generated by 4,. We put successively

H,, (%)=H,(2)"— B85 Hy(x), 1=1,---,r—1.

Then we see from (2.3) that H.(x) is of form (2.1) and that all the
roots of H,(z) form the P-module M. Since M is a P(G)-module, all the
coefficients of H,(x) are left fixed by G. Hence H,(x)=k[x] and F(x) is
divisible by H,(x). This concludes the proof of our theorem.

By making use of Proposition 5 and Corollary to Proposition 8 we
can derive from the above theorem the following

COROLLARY. The 1isomorphic representation of G associated with a
non-singular matric M in k, is irreducible if and only 1f M is q-irreduci-
ble over k.

THEOREM 6. Let M be a non-singular matrix of normal form in kn
and F(x) the characteristic polynomial of M. If there exist polynomials
F (x) and Fy(x) of form (2.1) such that among polynomials of form (2.1)
F(x) ts the common multiple of F. (x) and F,(x) with the least degree and
that F(x)/x 1s relatively prime to F,(x)/x, and if we put F(x)=H,(F (x))
= H (F,(x)), then M is q-stmilar to a matrix

M, 0

0 M,),
where H,(x) and Hy(x) are the characteristic polynomials of M, and M,
respectively. The Galois extension K|k associated with M s the composite

of the two Galois extensions K, and K, associated with M, and M, respec-
twely. Moreover the representation of the Galois group associated with M

18 equivalent to
4,0
0 4, ),

where A, and A, are the representations of the Galois groups associated with
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M, and M, respectively.

The first part of this theorem follows from Proposition 6. To
prove the second and the last part, let «,---, @, be a basis of L(F))
and B,---,B, be a basis of ¥(F,). Then «,--,«, B,--,B, form a
basis of ¥(F'), because ¥(F) is of rank r+s over P and F (x) has no
root in common with Fi(x). Hence we have L(F)=(F,)+ &(F,). Then
by Theorems 1 and 2 K is the composite of K, and K, By associat-
ing any root r of F(x) with F,(r) we have a P(G)-homomorphic map-
ping of ¥(F) onto ¥(H,), the kernel being L(F,). Therefore 2(H)) is
P(G)-isomorphic to ¥(F,) and similarly L(H,) to 2(F),).

THEOREM 7. Let M be a non-singular matriz of normal form in k,
and F(x) be the characteristic polynomial of M. There exist p-irreducible
polynomials F(x), 1=1, .-+, 7 over k such that F,x) is of form (2.1) with
deg Fy=q" and F(x)=F(F,(---F.(x)---)). Then the isomorphic representa-
tion of the Galois growp associated with M is equivalent to the representation

A, 0 0
x4 0
S A,

where A, 1s an irreducible representation of G with degree m,. Moreover A,
1s the 1somorphic representation of the Galois group of the splitting field of
F\(x), which 1s a subfield of the splitting field of F(x).

We put f(2)=f(2)f(x)---f(x) and h(@)=rf(2)---f(x), where fi(x) is
irreducible in k¢x) with deg f;(x)=mn,. Putting ¢f;(v)=F(x), oh,(x)=H,(%),
we have

H@)=F(H, @), i=1,.,7,

where H (x)=F(x) and H,, (x)=«. Then F(z) is ¢-irreducible by Corol-
lary to Proposition 8. Since all the coefficients of H,(x) belong to £,
L(H,) is a P(G)-module. By associating r&&(H,) with H,, (r)&2(F) we
obtain a P(G)-homomorphic mapping of L(H,) onto L(F},), its kernel
being ¥(H;,,). Therefore the representation 4, of G determined by
L(H,)[¥(H,,,) is equivalent to the representation which is determined
by L(#,). From this follows immediately our theorem.

From Theorem 7 we can deduce the following theorem which is
a sharpened form of Theorem 6 in [2].

THEOREM 8. Let k be a field of mon-zero characteristic p that con-
tains q—1-th primitive roots of wunity. The order of the Galois group G
assocrated with a mon-singular matriz M wn k, is a power of p if and only
of M 1s g-stmilar over k to a matrix of the form
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1 0 0Oeeeneenns 0
_ ¢, 1 0 cevvennnn 0
(2.5) 0 ¢ 1eveeeemns 0

.......................

By Theorems 1 and 6 it suffices to prove the case when M is a g¢-
indecomposable matrix of normal form. Let us use the same notation
as in Proposition 7. By virtue of this proposition and Theorem 1 we
see that M is ¢-similar over k to a matrix of form (1.4), where the
characteristic polynomial =, of M, with respect to k{x) is irreducible.
Now we can put

o= xgh(_x) """ gisi(x) s

where g,;(x) is irreducible in k[x]. Suppose that the order of G is a
power of p. Since the splitting flield K, of g,(x) over k is a subfield
of the Galois extension associated with M, the order of the Galois
group G;; of K;/k is also a power of p. Now G, is isomorphic to a
permutation group of the roots of g,(x). Since the degree of a
transitive group divides its order, the order of G,; is divisible by deg
g:;(x). If degg (x)>1, j=1,---,s, then > degg,(x) would be divisible
by p, which contradicts the fact that deg ¢z, is a power of p. Hence
there exists a factor g,;(x) with degg,(®)=1. If we put g, (x)=2—a,
with e, =k, then a,74=0 and ¢=; is divisible by x?—a,? 'z. Since o¢=; is
p-irreducible over k, we have ¢r,=2?—q,2 "¢ and therefore m,=x—a, .
Now Corollary to Proposition 7 shows that M is ¢-similar over & to
the matrix

alfl‘l 0 Dcevrnocncans 0
1 a,2‘1‘1 Oerevvvnnnnns 0
(2.6) M = 0 1 @@t 0

.................................

If we put
a,l"l Ocvernnnnn 0
C— 0 a,2"1 ...... 0
0 (P a1

then C:M*C-! is of form (2.5), where ¢,==0, 1=1, .., n-—1.

Conversely, if M is g¢-similar over & to a matrix of form (2.5),
where ¢ =0, t=1,---,n—1, then we easily find that there exists a
matrix of form (2.6) such that it is ¢-similar over k& to M. Since the
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splitting field of 2?—a, 2 'x over k is k itself, we infer from Theorem
7 that the isomorphic representation of G is of the type

1 0 eeenns 0
* ... 0
* % L 1

Then the order of G is a power of p, because so is the order of the
group of all unipotent matrices in P,. This completes the proof of
our theorem.

Next we shall deal with an example which shows that our theory
is quite instrumental in proving the existence of Galois extensions
with Galois group isomorphic to a given group. Let & be the group
of all those non-singular matrices in P, which are of the form

A 0 enen 0
X Ayeeens 0
* % L A, ),
where A4, are n, xn,matrices, 1=1,..-,r and n,+---+n,=n.

THEOREM 9. Let k be a field of non-zero characteristic p and P be a
finite field with q elements which are contained wn k. Further we assume
that Hilbert’s irreducibility theovem holds for k. Then there exist Galois
extensions of k with Galois group isomorphic to ®.

~Let v,,¥, .-+, ¥, be algebraically independent over k. We put
8,=0, s;=n,+-+mn, i=1,...,r and

ng—1

Fi(w)= ani’i‘ysi—lﬂxq teor YT

We define H(x), i=1,-.-,r, successively by
Hr(m):Fr(m) ’ Hz(x):Fz(Hzﬂ(m)) ’ 1=1,.,r—1.

We put ¥=Fk(y, ---, ¥, and denote by L the splitting field of H(x)
over . We choose a basis Y, -+, Y, of ¥(H,) such that YSHH, e, Y

form a basis of {(H,), i=1,.--,r. Then 3 is a subfield of k(Y ---, Y,),
because ¥, ---, ¥, are coefficients of F(x), i=1,...,r. Therefore we
have L=k(Y, ---,Y,). Now we can define an automorphism ¢ of L by
the relation :

(UYI! Tt UYn):(Y1’ e, YN,

where N is an arbitrary matrix in &. The group &* of all these
automorphisms of L is isomorphic to ®&. We have to show that the



14 E. INABA NSR. O.U,, Vol. 14

field Z* of elements which are left fixed by &* in L is identical with
Y. Since &(H,) is left fixed by ¢, the coefficients of H,(x) are all left
fixed by ¢. Hence the coefficients y,, .-, y, of Fi(x), t=1,...,r, are all
invariant under &*. This shows that X is contained in X*. Since
the degree of L over 3* is equal to the order of & and since the
degree of L over X is not greater than the order of & by Theorem
7, we see that Y*=23. Since J is purely transcendental over £k, we
can apply the well known technique as follows. ([5]). First we choose

b,=k, 1=1,..-,n, such that oi b, Y, c=®* are all distinct. Here we
i=1

note that k is infinite, because Hilbert’s irreducibility theorem holds
for k. We put

‘ F(xv yp D) yn):H(x_ozlszz) ’
where ¢ ranges over &*. Then the polynomial

yslysz o ys,F(xr Yy ooy yn)

is irreducible with coefficients in 3. By Hilbert’s irreducibility theo-
rem there exist ¢,Ck, 1=1,.--,n such that C,Cs, ** cer(x, Cpyovr, C,) 18
irreducible over k. Let & be the integral closure of the ring #k[y,
-+, ¥,] in L. By associating a polynomial g(y, ---,¥,) with g(c, -+, ¢,)
we obtain a homomorphism of k[y,---,¥,] onto k. The theory of
places assures us that this homomorphism can be extended to a homo-
morphism ¢ of J into the algebraic closure of k. ([6]). Since Y, all
belong to &, vY, is finite. Further yH (x) is separable over k since
¢, /=0, ©=1,...,r. Let L be the splitting field of yH (x) over k. The
Galois group of L/k is isomorphic to a subgroup of & by Theorem 7.
Since L contains vY,, t=1,...,n, all the roots of F(x, ¢, ---,¢,) belong
to L. But F(x,c,---,c¢c,) is irreducible over k£ with degree equal to
the order of &. Thus [L:k] is not less than the order of ® and
hence the Galois group of L/k is isomorphic to ©.

REMARK. It is known that Hilbert’s irreducibility theorem holds
for k if k is finitely generated and transcendental over the prime
field ([31, [7]).
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