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Let k be a field with characteristic p and K a finite Galois ex-
tension of k whose Galois group is denoted by G. In the previous
article [1] we showed that K can be defined by matrix equations of
a certain type when the order of G is a power of p and that these
equations have properties similar to those of Artin-Schreier equations.
The aim of the present work is first to show that the above result
can be extended to the general case when G is arbitrary, and secondly
to investigate relations between the form of generalized Artin-
Schreier equations and the type of representations of G determined
by these equations. It is hoped that our theory will contribute in
some degree to answering the gestion as to how we can construct
Galois extensions whose Galois groups are isomorphic to a given
group.

1. Generalized Artin-Schreier equations.

Let k be a field with characteristic p. We denote by k, the ring
of all square matrices of degree n with elements in k. When a ma-
trix C=(c;;) is given, we use the notation C? for the matrix (cf;) with-
out the risk of confusion throughout in the following. Two matrices
M, and M, in k, are called p-similar to each other when there exists
a non-singular matrix C in k, such that

M,—C?M,C

The relation of p-similarity is obviously reflexive, symmetric and
transitive, and we call such a transformation a p-transformation.
We consider an algebraic closure £ of k£ and a matrix equation

(1.1) X?=MX,

where M is a given non-gsingular matrix in k,. If A?=MA holds for
a matrix A in £, then A is called a solution of (1.1), in particular a
non-singular solution if A is non-singular. If A is a non-singular
solution and A’ an arbitrary one of (1.1), then we have (A~1A")?=A"14’
and therefore all elements of A-'A’ belong to the prime field P. Thus

A'=AD with a matrix D in P,. By adjunction of all elements of A



2 E. INABA NSR. O.U., Vol. 13

to £ we obtain a finite extension K of k. Since this extension K
does not depend on the choice of a non-singular solution of (1.1), we
shall say that K is associated with the matrix M. If is easy to prove
that, if a matrix M’ is p-similar to a non-singular matrix M, then
M and M’ yield the same extension of k. »

Let £ be an algebraic closure of £ and £* the maximal separable
extension of k contained in £. The first thing we have to prove is
that there always exists a non-singular solution of (1.1) and that this
belongs to £,% in other words, M is associated with a finite separable
extension of k. To accomplish the proof we need a preliminary
account of some basic facts.

PROPOSITION 1. A square matric M=(m;) 1s p-similar to a matric
of the form

r * *
my, My 0 «eenee 0 ‘}
* * *
My, Mgy Mhgg™cvneee 0
(1.2) %] e
* * *
Moy 14 Moy g eemeeees m,”, .
* * *
L My My ™ wvermenenees m,,” |

by a p-transformation with a matrixc of the form

1 0 0---0
(1.3) C=| % % «ooene ,
K.k eeeees
where m;;*=0, when j—i>1, and m;, ,*=1 or m,, ,*=0, i=1, .-, n—1.

We prove this proposition by induction on degree n of M. When
n=1, the lemma holds trivially. When n>1, we first show that M is
p-similar to a matrix M'=(m,/) for which m = --- =m,’=0 and m,/
is 1 or 0. If m;=0, j=2,..-,n, then we have only to put M’'=M. So
we consider the case when there exists at least one non-zero element
among m,;,j=2,---,n. In this case we can assume that m,=5=0. Be-
cause, if m ;4=0 for j>2, we consider the matrix D=(d,,), where
d,;=1, when 15=2 and 2=Fj, d;=d,;=1 and all the other elements of D
are zero. Then D is of form (1.3) and

DPMD " '=DMD 1 =] cevvreeesenienns.

------------------

‘Assuming that m =0, we put
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Qevvrenneennnenn 0

Mgy wovmeeees M

C=|0 0 1..eeer... 0
L0 0 Oeevennnnn 1

From the relation CPM=M'C we have
I __ 14 o
mll Mmll’ le /m’lz’“mm ’
4 4 _ y
m, +m,/m;=m; when j>2.

Therefore m, =1 and m,/=0 for j~>2. Then we can put

M, [mll 1 O ...... 0}
L, M, 1’

3

where M, is a square matrix of degree n—1. By induction hypothesis
there exists a non-singular matrix C, of form (1.3) such that CprM,C,*
is of form (1.2). Putting
1 0
o[} o]
0 C,

we can easily verify that the matrix C*M'C-?' is of form (1.2). This
completes the proof of our proposition.

A matrix M is called p-reducible when it is p-similar to a matrix
of the form

|

When M is not p-reducible, it is called p-irreducible. We note that an
alternative way of defining p-reducibility is: M is p-reducible when
it is p-similar to a matrix of the form
, M, M,
(1.5) { }
| 0 M,

In fact, by repeating the process of interchanging two rows as well
as corresponding columns a matrix M® of form (1.4) can be trans-
formed into a matrix M® of form (1.5). Hence there exists a non-
singular matrix D in P, such that DM®D1=M®. Since DP=D, M®
is p-similar to MO,

LEMMA 1. If two matrices M, and M, are p-similar to M/ and M/
respectively, then a matrix
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18 p-stmilar to a matric
M/ O]
[** M/
For, if CPMCi'=M/ and CPM,C;'=M,/, then we have
[Cl O]p[]ll1 0] C, 0]‘1 [Ml’ 0]
0 CJ L« M2[0 C,l Lax MY

PROPOSITION 2. A matrizc M 1s p-irreducible if and only +f m;;..*,
i=1,---,m—1, are all 1 whenever M is transformed into a matrixz M*=(m;*)
of form (1 2) by p-transformations.

It is evident that M* is p- reduc1ble when one of m,, ,* is zero.
If M is p-reducible, then M is p-similar to a matrix of form (1.4).
Let M/ and M,/ be p-similar to M, and M, respectively such that both
M/ and M, are of form (1.2), then by Lemma 1 M is p-similar to the

matrix
M/ 0
[* Mz’]

This is obviously of form (1.2) and at least one of m/, ., is zero.
PROPOSITION 3. Let M=(m;;) be a matrix i k, omol

(1.6) x;? :; M55+ 1, LEk
1=1, «-e, M

be a stmultaneous equation with n unknown quantities x,. There always

exist elements ay, -+, «, m 2 which satisfy (1.6). In particular, when M is
non-singular, these elements «; all belong to £2*.
By putting
xl - ll
X=| |, L—| :
z, L,

we can represent (1.6) by the formula
 XP=MX+L.

If C is a non-singular matrix in k,, we have

1.7 (CX)Y=C?MCYCX)+C"?L

Hence we can assume that M=(m,;) is of form (1.2), that is, m,;;=0,
when j—:>1, and m,,,, is 1 or 0. The proof is carried out by in-
duction on degree n of M. When n=1, (1.6) becomes x/=m,x, +1,
and, if m,7=0, the derivative of the polynomial X?—m, ,X—1[ is —m.
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Hence the solution x,=«, belongs to £*. When n>1, we first consider.
the case when M is p-reducible. We put

=[]
IS/Ap/SN

where M,=(m{?) is of degree 2 and M,=(m?) of degree n—1. By in-
duction hypothesis there exist «,---, a; in 2 such that

ocpvzm(”a
p=1, .-+, 2.

and also there exist «,,, -+, @, In £ such that these elements satisfy
the simultaneous equation

P = ﬁ) mPu;+1; +E mia;

i=A¥1
=241, -, m
with »—2 unknown quatities «,.,, ---,%,. Then «,:---, @, obviously

satisfy the equation (1.6). When in particular M is non-singular, so
are M, and M, Then «;,1=1,---,n all belong to £* by induction
hypothesis. It remains to prove the case when M is p-irreducible.
Then m,,;,,=1, i=1,.--,n—1. We define polynomials of a wvariable X
successively in the following manner

f1(X):X1. fz(X):fl(X)p_"mnfl(X)_ll

(1.8)
Sini(X) :fi(X)p'—Zl My f (X)) —1, .

It is easy to see that the degree of fi(X) is p*'. If «, is any root
of f,.(X), we put fi(a)=a;t=1,---,n, and find that «, ---, a, satisfy
(1.6). Conversely, if «,, ---, @, satisfy (1.6), then «, is a root of f,, (X).
Next we shall prove that f,.(X) is separable over k when M is non-
singular. For this it suffices to prove that the derivative f,./(X) of
Jui(X) is a nomn-zero constant. Otherwise there would exist a2
such that f, . {(¢)=0. Since

141(X)+Zmuf (X)=0
@:1’ 2, R

we would have

Sy fl(@) +f @) =0,  i=1,-,n—1,
=1 .

Z: My /(@) =0
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From this follows that f/(a)= --- = f,/(@)=0 since M is non-singular.
This contradicts the fact that f/(X)=1. Thus we have proved that
a, is separable over k. Next we have from (1.8) the relations

1
a, =ap—> ma,—l,
=1
’l::l, cosy n—1.

and hence «,, -+, «, all belong to k(a). This proves that «,, ---, a, are
also separable over k.
PROpPOSITION 4. Let M= (m,;) be a non-singular matrix in k, and

(1.9) xil’:imﬁxw 1=1, -, M,
i=1

be a simultaneous equation with n unknown quantities x;. Then there exists
a non-trival solution x,=a;, 1=1, ---, n of (1.9) such that «, all belong to 2%F.
When inm particular M is of form (1.2), we have a,==0.

By virtue of the relation (1.7) we can assume without loss of
generality that M is of form (1.2). Further, when we examine the
proof of Proposition 3, we observe that it suffices to prove the case
when M is p-irreducible. Assuming that notations are the same as
in the proof of that proposition, we see that f,(X) are all divisible.
by X since ;= ..- =[,=0. If we put f,. ,(X)=Xg,.(X) we find that
the degree of g¢,.,(X) is p—1 and that g,.,(X) is not divisible by X.
For we have

fn—{(X) = Xgn}-{(X) +gn+1(X) ’

where f,./(X) is a non-zero constant. Hence any root «, of g,.,(X) is
not equal to zero. '

THEOREM 1. If M=(m,) is a non-singular matriz in k,, then the ma-
trix equation

(1.1) ' Xr=MX

has a non-singular solution in 2,*. In other words, M is associated with a
finate separable extension. ’

We can assume that M is of the form (1.2) stated in Proposition
1 and prove the theorem by induction on the degree n of M. When
n=1, it is clear that the theorem is true. When n>1, by Proposition
4 there exist elements «,, ---, «, in 2% such that a==0 and | ‘

. ;
af=>m;a,;, 1=1, -, m.
j=1

If we put
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«, Qeeeens 0
c a, Teveens 0
a, 0-..... 1

and (CYYMC=M'=(m,/), then we have

n
D r__ — »
al mn —1_21 'm’ljaj - al ’

k3
am,/ +mi1,:2 My0=ap , when i>1,
. Jj=1
alm,f =m;, when 7>1,
aipmul"l_mij’:mij, : when 2>1, 7>1.
Hence we have
r__ ! ___ . __ !l __
m, =1, My = +eenees =m,/ =0,
! __ __ !
7’)1,13 —— vesese __mlﬂ =0 ,
’ .
m;] =my;, when 7>2.
If we put
1 M/
e
’ ?
0 M,

- then we see that M, is also of form (1.2) and non-singular. By in-
duction hypothesis there exists a non-singular matrix A4, in £% , such
that A?=M/A, Since a polynomial of the form z* —x+a is separable,
there also exists an n—1-dimensional row vector A4, such that A7
=A,+M/A, and that all the elements of A, belong to £*  Then we

.E ]
A——’
() . A.3

is a mnon-singular solution of (1.1) and that A belongs to £,*. This
completes the proof of our theorem. ;

Let K be the separable extension of k associated with a non-
singular matrix M in k,. In the following we shall show that K is
a Galois extension of k£ and that its Galois group is isomorphic to a
subgroup of the general linear group GL(n, P). If A is a non-singular
solution of the matrix equation X?=MX, then we have ¢A?=M¢A for
any isomorphism o of K over k. Since oA is also a non-singular
solution of (1.1), there exists a non-singlar matrix A(s) in P, such
that
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(1.10) 0A=AA(0) .

This shows that ¢ is an automorphism of K over k and therefore K
is Galois over k. By virtue of the relation (1.10) we see that A(o7r)
=A(0)A(r) holds. Hence the Galois group G of K/k is homomorphically
mapped into GL(n, P). Further we can verify that this mapping is
an isomorphism. For, if A(c)=1I, then we have ¢A=A, whence it fol-
lows that 6=1. We shall say that this isomorphic representation A
of G is associated with the matrix M. We contend that, if two non-
singular matrices M and M’ are p-similar to each other, then the
representation 4’ of G associated with M’ is equivalent to the repre-
sentation 4 of G associated with M. In fact, if we put

AP =MA , ArP=M"A",

cA=AA0), cA'=A'"A (o),

M'=C*MC-*.
then CA is a nomn-singular solution of the equation X=M’'X? and
therefore we have
(1.11) A'=CAD

with a non-singular matrix D in P,. From (1.11) we have
CADA (0)=A"A(0)=0A"=0CAD=CAA(c)D

and hence A'(¢)=D"'4(c)D. Thus we have the following

THEOREM 2. The class of all matrices p-similar to a mon-singular
matriz M in k, determines a Galots extension of k uniquely and the repre-
sentation of its Galois group in P, uniquely up to equivalence. .

Next we investigate whether the converse of this theorem holds.
Let K be a finite Galois extension of %k and G its Galois group.
There certainly exists an isomorphic representation of G in P, if we
choose n suitably. (For instance we can take the regular representa-
tion of G). Let 4 be an isomorphic representation of G in P,, where
the identity of G corresponds to the unit matrix, and g an element
of K such that o, &G constitute a normal basis of K over k. 1f we
put

(L12) A= Ao~ Yo8,

then -we can verify that A4 is non-singular. In fact, we can choose
an element y of K such that

Tr eu(rf) =1,
Tr x4 (roB)=0, when o==1.
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If we put B=3] A(r)rr, then

AB=3Tr (Bgr)A(g)=1 .
From (1.12) we have .
(1.10) 6A=AA(0) for oEG.

Since o?=p if p&=P, we see from (1.10) that ¢A?P=APA(c) also holds.
Then o(A?AY)=A?A-' for o=G and therefore A*A-' is a non-
singular matrix M in k,. Thus A is a non-singular solution of the
equation X?=MX. Since the elements of 4 all belong to K, the ex-
tension K* generated by adjunction of all elements of A to k is an
intermediate field between K and k. If o is any automorphism of K
over K*, then we have A(s)=1 from (1.10). But this yields o=1 by
the assumption that 4 is an isomorphic representation of G. Hence
K*=K and the matrix M is associated with K and 4.

Further we assert that, if two non-singular matrices M and M’
determine the same extension of & and if the representation 4 of G
associated with M is equivalent to the representation A’ associated
with M’, then M’ is p-similar to M. In fact, if we put

AP =MA , A =M'A",
cA=AA(o), oA = A" A (0) ,
A(0)=D'4(0)D, DEP,,

then o(A’D'AY)=A'D*A-' for ¢&G and therefore C=A'D'A"" is a
non-singular matrix in k,. Then we can easily verify that M/'=C*MC"".
Thus we have the following

THEOREM 3. Let K be a finite Galois extension of k and A an isomor-
phic representation of its Galois group G in P,, where A(c) is a unit matrix
when o=1. There exists a matrix equation X=MX? such that M 1is asso-
ciated with K and A. Furthermore the class of p-similar matrices is deter-
maned uniquely by the extension K and by the class of equivalent representa-
tions of G.

2. Matrix equations and representation of Galois groups.

In this section we shall show relations between the form of a
non-singular matrix M and the type of the representation A of the
Galois group G of the Galois extension associated with M.

LEMMA 2. If a non-singular matriz M in k, is of the form
M, 0

M=y )

M2 M3

then there exists a non-singular solution A of X?=MX with the form
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By Theorem 1 there exist non-singular matrices 4, and A4, such
that AP=M A, and AP=M,A, By Proposition 3 we can verify that
there exists a matrix A, such that A=MA,+M,A. Then, putting

4 [A1 O]
A, Al
we find that A is a non-singular solution of X?=MX.

THEOREM 4. If a non-singular matric M in k, is p-similar to a ma-
trix of the form

M, 0
2.1) [ | ]

M, M,
then the representation A of G associated with M is reducible such that A s
equivalent to a representation of the type

A0
(2'2) ]: j] ’

4, Ay
where A, and A, are representations of the Galois groups of the intermediate
extensions K, and K; associated with M, and M, respectively. IFurthermore
the converse of this statement holds.

By Theorem 2 we can assume that M is of form (2.1). Then by

Lemma 2 we have a non-singular solution -

A4, 0
A:[ ]
A2 A3
Since ¢A is also of the same form, we have
A 0
A(G):[ 1(0) ]
Ay(0) Ay(0).

and oA,=A4,(0), cA,=A,4,(0). Conversely, if 4 is equivalent to a
representation of type (2.2), then by Theorem 3 we can assume that
A4 itself is of type (2.2). By considering the relation (1.12) in the pre-
ceding section we see that both matrices 4 and A? can be of form (2.1).
Then M is a matrix of the same form. This concludes the proof of
our theorem.
In the preceding section we showed that a matrix of form (2.1)

is p-similar to a matrix of the form

M, M,

Lo ol

b3



December 1962 On Generalized Artin-Schreier Equations 11

We note that a statement silmilar to one in Theorem 4 is true when
we consider representations of the type
[A1 AZ]
0 A,

in place of those of type (2.2).
A matrix M is called p-decomposable if M is p-similar to a matrix

.

THEOREM 5. If a non-singular matrie M in k, 1s p-decomposable such
that M 1is p-stmilar to a matrix of the form

2.3) [é% M(j ,

then the representation A of G associated with M is decomposable such that
A 1s equivalent to a representation of the type

!

Furthermore, of K, and K, are intermediate extensions asscciated with M,
and M, respectively, then A, ond A, are representations of thewr Galois groups
respectively and moreover K=K K, hold. Conversely, 1f the representation A
18 equwalent to a representation of type (2.4), then M s p-similar to a
matrie of form (2.3).

The proof is almost immediate if we examine the proofs of
Lemma 2 and Theorem 4. By a left (right) unipotent matric we under-
stand a square matrix whose elements lying above (below) the prin-
cipal diagonal are all zero, while the elements lying in that diagonal
are all one. From the argument in the preceding section we can
infer that a right unipotent matrix is p-similar to a left unipotent
matrix. So there is no need of making distinction between right
and left unipotent matrices. In the following we shall call them
simply wnipotent matrix.

THEOREM 6.  Let K be assoczated with o non-singular wmatriz M. In
order that the order of the Galois group G of K|k be a power of p, it is
necessary and sufficient that M be p-similar to a wunipotent matrix.

First we prove the sufficiency of the condition. By Theorem 2
we can assume that M is a unipotent matrix. Then by Theorem 4
the representation of G is of the type
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1 Oeeeeee 0

* T1eeeens 0
(2.5) A

* Keooons 1

Because the extension of k associated with the unit matrix of degree
one is k itself. Since the order of the group of all unipotent mat-
rices in P, is a power of p, so is the order of G. To prove the
necessity we make use of the well known fact that, when the order
of G is a power of p, there exists no other irreducible representation
of G than the identical representation of degree one if we consider
it over a finite field of characteristic p. Then 4 is equivalent to a
representation of type (2.5). Therefore by Theorem 4 M is p-similar
to a matrix of the form '

my, O.eevns 0

* Mgg+=eer 0
M= :

* *e Moy

Since by Theorem 4 the extension of k associated with the matrix
m;; of degree one is k itself, there exist ¢;=k such that ¢,?=m ¢, and
¢,==0. If we put

¢, Qeevens 0
O 0 Cyrevnee 0 ,
0 0..... C,

then (C~Y*M'C is a unipotent matrix. This justifies the wvalidity of
our theorem. '

In the following we shall give an example which shows how our
theory can explain classical results regarding Artin-Schrier equations.
By using the notation foc for ¢®»—c, we denote by §k the set of all
elements ¢ with c=k. {k is obviously a module over the prime field
P. Let m be a P-module with elements from & such that m contains
fk and that the factor module m/pk is of finite rank. It is well
known that m determines a finite abelian extension K of k& whose
Galois group is abelian of type (p,.--,»). Assuming that the rank
of m/pk is m—1, we choose m,, .-, m, as a system of representatives
of a basis of m/pk. We consider a unipotent matrix M of degree n

1 N
v=ly )
0 I
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where N=(m,, ---, m,) and I signifies the unit matrix of degree n—1.
Putting pa;=m; with «,=8, we form a unipotent matrix A of degree n
A [1 Az]
o 1t

where A,=(a,, ---,,). Then A is a solution of X?=MX. We see im-
mediately that M is associated with K=k(«,, ---,«,) and that the
representation of its Galois group is of the type

1 A(a)eeenes A1n(0)

0 Leweeereaneen 0
A(o) =
0 Oeeeeevernnne 1
For another basis m,/,---,m,/ of m/pk we form the corresponding
matrix :
1 N/
wely ol
0 7
where N'=(m}/, .--, m,). Since there exist elements ¢, such that

n
' p_
My —+Cyy —clj+'22 m,C,;,
“
j:2r LR (2

where ¢,;&k and c¢,;&FP when v>1, we have

1 Cz]p[l N’] [1 N][l Cz]

[o cllo 14 to 1llo cl’
where C,=(¢y,, +++, ¢,,) and C,&P, .. This shows that M’ is p-similar
to M.

The above example illustrates the fact that our theory generalizes
the classical theory. However it should be noted that, when the
Galois group is cyclic and its order a power of p, equations of Witt
type are more convenient than ours. In view of this fact it is con-

jectured that a theory similar to ours may be established when we
consider matrices with elements in the ring of Witt vectors.
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