Natural Science Report, Ochanomizu University, Vol. 10, No. 2, 1962 21
BEROKLTFRE BRBIZEHRE FL0H H2F

Almost Periodic Solutions of a System of Ordinary
Differential Equations with Periodic Coefficients

Yasutaka Sibuya (i 7% & &)

I. Introduction

Usually the study of periodic solutions of ordinary differential
equations is reduced to the study of a finite number of relations be-
tween certain parameters (or arbitrary constants). Those relations
may be derived from the condition that solutions be periodic func-
tions of the independent wvariable. In this paper we shall study a
very special case in which such relations between parameters can be
obtained even for almost periodic solutions.

II. Assumption and Main Theorem

§1. Preliminaries: Let a system of ordinary differential equa-

tions of the form
’ da. .
(1.1) _g.tf_:xjxj+ajxj_l+ﬁ(t, ) (7=1,2, -, m)

be given, where 4; and §; are constants and f; are power series of «
with coeflicients periodic in ¢ of period 1. We shall assume that ¢,
is equal to 1 or 0 and that if 6,=1 then 2,=1,.,. On the other hand,
the power series f; are assumed to contain only those terms of de-
grees not less than 2. We shall write f; as follows:

(1.2) St ) :mzﬁéfjp(t)w" ,

where p is a system of nonnegative integers p, ---,p,, and

ch:xilf’l cee gPn
(1.3) {

| pl=p+ ++ +Dp-

Our assumptions say that the coefficients f,,(t) are periodic of period 1.
Let us assume that

(1.4) { R2;=0, 2,%0 (mod 2m7) (1=12,---,7),

R=0 or 2,=0 (mod 2n7) (J7F1, 2, -+, 7).

Then consider a system of ordinary differential equations of the fol-
lowing form:
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(1.5) dy, [ A0 It )+ AYC)er (G=1,-,7),

. dt ijj+5]'y(i“l+fj(t’ y) (3#1: ctt /V') ’
where A; are power series of the parameters C, -.-,C, with constant
coefficients and A4,(0)==0. We shall write A, as follows:

(1.6) A Q)= ,,”ZIA”CP ’

where p is a system of nonnegative integers p,, ---, p,, and
(1.7) C*=Cr...(Cor,

Now we shall determine the power series A; in such a way that
the system (1.5) admits a solution of the following form:

(18) y=Ujtt, w)= 3 Uptyw CG=1m),
where U, are periodic in ¢ of period 1 and

(19) uj:Cjele (.7:1’ 2? tty /'ﬂ) ’
(1.10) u=upr e ubr .

To do this, substituting (1.8) in (1.5), we derive a system of linear
ordinary differential equations

au,, 2 Un(@) +8,U;_,(8) + Hyy(b) + Apetn’ (j=1,---,7),

(1.11) Rk N _ |
dt ApUpp(t) +0,U; 1 (8) + H,p(2) (771, -+, 1),
where
(1.12) Ajg=2A;— kZ:‘fpklk,
and '
(1.13) v S, U)= H;OH”“)W'
First of all, we put
(1.14) U =0, (Gol, e ms k=1, o, 7)
and
—0, (k=j—1),
15 A, =] 7 | :
- Lo (k=i —1) ,

where d;, is the Kronecker’'s delta and

€= (0> =+ » Opa) -
Then for |p|=2 we put

_ Si{aj U, (t) -+ H(t) e 'dt (14==0 mod 2ri) ,

(1.16) A=

0 (2,70 mod 2m),
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Sls{aj U,_1p(t+8)+ H(t+s)+ Aetn@*9te4nds
(1.17) Uyt)= 0 (2»=0 mod 2n1),
Ej,S:{ﬁjUj_1p(t+s)+ij(t+ s)le *n'ds (2570 mod 2m) ,
where

A;
(1.18) Ep—= %7 (2,70 mod 2i) .
‘ 1—e*n :

It is easily seen that the series A, and U, thus determined satisfy

the relations (1.5) formally.

§ 2. Main theorem: So far we have determined the formal
power series A; and U, in such a way that they satisfy the relations
(1.5). If they are convergent, then the almost periodic solutions of
the systmem (1.1) will be given by

2= Uj(t, w) (G=1,,m),

(2.1) :
0 =A4,0C) : (J=1,--,7).

The convergence of the series 4; and U, can be proved under certain
conditions on 2, Namely, we shall prove the following

THEOREM : Suppose that, except for a finite number of p, the quant ties
A, satisfy the following conditions :

(i) 2,70 (mod 2ri) ;
(i) | By |<K|p I,

when K and v, are positive constants independent of (4, p). Then the quanti-
ties A; are polynomials of C and the series U, are convergent.

§3. Remarks: Consider a system of ordinary differential equa-
tions of the form

(3.1) 9T pgtft ),
dit

where = is an n-dimensional vector, A is an n by n constant matrix,
and f is an n-dimensional vector whose components are similar to the
functions given by (1.2). By a linear transformation of the unknown
vector z, the system (3.1) can be reduced to a system of the form
(1.1). The same is true for the case where the matrix A is periodic
of period 1 with respect to ¢.

If every characteristic value of the matrix A is purely imaginary,
and if the conditions (i) and (ii) of our theorem are satisfied for every
p, then the general solution of the system (1.1) is almost periodic.
This is essentially due to C.L. Siegel [2] and one of the corollaries



24 Y. Sisuva NSR. O0.U,, Vol. 10

of our theorem.

In one of our previous papers [1] we used the similar ideas for
the construction of periodic solutions. In that case the proof of the
convergence of the series A; and U; was not. complicated. However,
in the present case, because ‘of the small divisors, such a proof is
very complicated. Ours is essentially based on the ideas invented by .
C. L. Siegel [2]. .

The case when A is a real matrix is not covered by our theorem.
In fact, if 2 is a characteristic value of A4 and purely imaginary,
then —2 is also a characteristic value of A. Therefore, the conditions
of our theorem are not satisfied.

"III. Proof of Main Theorem

§4. Part I: The following facts can be derived from our as-
sumptions:

(1) AP+ Dy -+ 2,0,30 * (mod 27i)
Jor every p;
(i) there exists a positive number L such that we have
1
(4.1) U,(#) :Ejpgo (8, (t+ )+ Hy(t + 5)}e-Ands
for | p|=L.
Let us put
4.2) - ' H,=max max | H,(t) |,
Jj t
(4.3) U,=max max | Uy(t) |,
7 ¢
and
nU, (Ipi>1).
Then for Ri,3=0 let us put
1
(4.5) o= Ej ISOI e~ | ds
and
(4.6) o=S8up {1, o} .

G.»

On the other hand, we put

4.7 , E,=1 ) (2,=0 mod 2n17),
and
(4.8) E,=max{1,|E,|}.

RAj=0



[\~
[}
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Since (4.1) implies

(4.9) | Uy(t) |=go’E{H, (=1, ,n; |p|=L),
we have |
(4.10) M,<n*"K}H, (Jp|=L).

§5. Part II: Let

(5.1) | | £, x) [N
for ‘
(5.2) | 2 | <0, —oo<lt<l+ oo,

where N and & are positive constants. Then we have
(5:3) St UYKN 33 (35 Mawy™a~,

where { means that the left-hand members are majorized by the right-
hand member as power series of u. Therefore ’

(5.4) H<N > M, --M 0.
n1+';;%13v=¥ v
Hence
(5.5) M, <nw*c"ErN > M, - M, o (Ipl1=L).

Prte-dpy=p
y>1

§6. Part II1: Let us define a function @ of a single variable v
by the following equation :

(6.1) O —v+n2"N S om6™
m=2
and put
(6.2) T (u) = Ou,+ -+ +u,) .
Let '

(6.3) T(U)=u,+ - +u,+ 3 rul.
Ipi=2

Then

(6.4) r,=n0"N D} 7, 7,070,

Pytrebby=p
p>>1

Now we put ;

(6.5) . %=1 Er max o, -0, (p=1).
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Then if we choose a sufficiently large positive number a in a suitable
way, we have the following estimates:

(6.6) ' - M= (ane"N)W gy, (p|=1).

(6.6) can be proved by induction.
Hereafter we shall aim at the proof of the existence of a suﬁﬁ—
ciently large positive constant b such that we have

(6.7) SRR Bl i (Ipl=1).

It is evident that (6.6) and (6.7) imply the convergence of the series
U.

7

§7. Part IV: First of all we shall prove the following :

Let us put
(7.1) a,=b1=1| p |[-mon
Then +f
(7.2) b 2oL

we have the inequality

(73) amabz<ab1+¥’2 *
In fact
a’;@ldn _ 1 n 1 21;0an~1§2%0an_1<1 .
ah"bg l ‘pl I I ‘p2 l
Now according to the definition (6.5) of ¢, we shall write
(7.4) ap—:.(]:C%E’pl e B Ay - 44,
where

Po=Db =b,+ - +p1?‘1’

Pi=pj =Pyt - +pj+1rj+1 (g=1,---,9),
1
| s 5
: 1
]psﬂylg—z“'pI (y;l!"'rrsu)’
Aj:apj2 e UPS-F178+1 (j:l, ety S)
and
As+1:(7ps+ll oo ops+lrs+1 B

If every component of a vector p—q=(p,—q, -+, p,—¢q,) is nonne-
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gative, then we write

(7.5) p>q.
According to this notation, we have

(7.6) PP e >,

Let us assume that b is sufficiently large so that we have (7.2) and (6.7)
Jor |p|<2L. Then assume that

(7.7) | p|[>2L.

If we assume that we have (6.6) for |9 |<|p| then (7.3) implies
that we have

A==y — [T (G=1,,9).

On the other hand,
AHlébll’s[*po( P_:ol q, }—MonL ’
where
¥Ysi1="00 ps+ly'£qy (V::L'"HOO)'
Hence
: N 0o —2vgnL

(7.8) g, =¥ 00 LI pii—b;l [11 qy } (B By, - B

j=1 y=

§8. Part V: We are now going to prove the following esti-
mates :

CEY B, B - BB 15, (L1 b= 1]
where
(8.2) E— (2701 [WK)

To do this, we need the following results:
(1) If p=>y and E,=E,,, we have |p—p |<L;
(i) 2f p>y and E,==E,,, we have
min {| &, |, | By [}2%7 K| p—y/ 0.

In fact, £, =FE,, implies

Jp—
eliv = ety |

Hence

=+ Z 2,(p,—p,) (mod 271) .

y=q+1

This proves the statement (i). On the other hand, the inequality
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1 1 1 2
< + <—
| Ejp—p'+€k | — IEjp | | Ekp' I min {| Ejp L Ek!p’ I}

and the assumption (ii) of our theorem imply the statement (ii).
We shall prove (8.1) by the use of the mathematical induction -on
s. To do this we consider the following four cases:

Case I: E, = -+ =E, ;
Case IT: E, = - —E, —minE, ,
: y=0 v
E,,,>E,, j<s;
Case III: K, = .- :E’ps—_—msin E, ,
y=0 v
Ep1_1>Efp]! .j>0 ;
Case IV: B, = - =E, =min B, ,
y=0
E#’j—1>EDj’ EP75+1>E1’7¢ ’
0<ysk<s.

In Case I, we have |p,—p,|<<L. Then

Sgl ’po_ps I<L .
Hence
B = (K] b, [")" .
This implies (8.1).
In Case II, we assume
X s voL
Ebjﬂ EpséEs_J{l Pt | ]__I2] Pooi—b, ]]
y=J+

in order to apply the mathematical induction on s. Since

I po IZI 'pj+1 } ’
we have
X s voL
(83) B,y BB 19| TT 19—, 1]
On the other hand, we have
J+1<ZL

and ‘
E,,<2%K| p;—Pq | .
Therefore we have

(8.4) E%)o‘ Epjg(zvonK)Ll 0;— Py [PoF
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(8.3) and (8.4) imply (8.1).
The Case III can be treated in a similar way. In Case IV, as
assume

E, --E, B, -E

17 P+t Ps

s roL

gESAk” I pOI l ﬁ l py-41_pu l l p]‘—l_’pk'ﬂ IVI—IIH-zl p""l—fpy ‘

Since we have

Epj§2”°+,1K min {| ;o —p; "% [ Pe—Ppy 70}

and
we have
(8.5) E,, - B, < (27" K) min { [p,_,—9; |, | De—Prs [JT7F -
On the other hand,
(86) EPO ot EPJ'—-1 Epk+1 ot E’Ps
P s 2oL 2+ L 2oL
éES k+7 0 ,-1—P, .
S ) g Dby b | PP | J
because
]pj—l—"pkﬂ [ < ij—1—p7‘l+lpj_pkl‘f"!pk_pmlf < 2+ L
AR — vlpj—-l-—’pjn"pk—’karJ —_min{lp'—17pjl! lplo*‘phhll} )
E l ‘pu-l—’py ] . ’

(8.5) and (8.6) imply (8.1).
This completes the proof of (8.1).

§9. Part VI: From (7.8) and (8.1) we derive the following in-
equality :

s 00 ~vonL

(9-1) 0, SO TR I T p, —p; | [T g, 1° I P [7om".
j=1 p=1

On the other hand, C.L. Siegel [1] proved an inequality

©-2) LTI 1 [T 1q, P2l p, 8000

(9.1) and (9.2) imply
(9.3) 0, =D ~5 -0 Fnls+ ) (8po+s~TymonL | 3 | ~monL
Therefore if
b=8vorl Fjm |
then we have (6.7).
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Thus the proof of our theorem is completed.
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