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Let k& be a field with characteristic » and K be a Galois extension
of k, the order of the Galois group being a power of p. When K is
cyclic of order p over k, it is well known that equations of Artin-
Schreier type are essential for its theory and this result was extended
to a more general cyclic case by Albert and Witt [1], [5]. The construction
of Galois extensions over k for non-abelian case was first studied by
Witt [6], but he did not give equations which characterize these
extensions. So it is desirable to consider this problem anew. In the
case when the characteristic of £ does not divide the order of the Galois
group the theory on Galois algebras initiated by Hasse [4] contributed
much to the study of Galois extensions, but it does not seem to be
applicable for the present case. So we consider this problem apart from
his theory. Our method is based on representations of Galois groups
and we show that matrix equations of a certain type characterize those
extensions mentioned above.

1. Matrix equations and Galois extensions

Let k£ be a field with characteristic p. We denote by %, the ring
of all square matrices of degree m with elements in k. By wunipotent
matriz we understand a square matrix whose elements below the princi-
pal diagonal are all zero, while the elements lying in that diagonal are
all 1. For a matrix A=(a;;) we denote with A? the matrix (a?) since
no confusion will arise throughout in the following. Given a unipotent
matrix M=(m,,) in k,, we consider the matrix equation

(1.1) Xr=MX.

We shall show that there exists a unipotent matrix A satisfying (1.1)
in 2,, where £ is an algebraic closure of k. We put «;;=0 whenever
1>7 and «a;=1, t=1,---,n. When ¢<j we can determine «;, succes-
sively as follows. Supposing that «,, have already been determined
when j—i<7r, let «;, be a root of the equation
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(1.2) wp‘—x:- Z _’m/,,;,\aw
<AL

when j=1+7. Then we have
ay= 2, Moy -
i<AL]

Thus the unipotent matrix A=(«;,;) is a solution of (1.1).

When a solution of (1.1) is a unipotent matrix, we call it a unipotent
solution. If B is another arbitrary solution of (1.1), then we have
B*=MB and this yields (A'B)*=A"B. Therefore A7'B is a matrix in
P,, where P is the prime field. Then we see that all solutions of
(1.1) can be obtained by multiplying all matrices in P, on the right-hand
side of a unipotent solution.

Let K be the extension of %k generated by adjunction of all elements
a;; of A to k. The consideration above shows that K is determined
uniquely independent of the choice of a solution of (1.1), provided
‘that the solution is a non-singular matrix in £2,. We denote by U, the
group of all unipotent matrices in P,. We shall prove that K is a Galois
extension of k£ and that its Galois group G is isomorphic to a subgroup
of U,. In fact, from (1.2) we find that K is separable over k. Let A
be a unipotent solution of (1.1). Since cA?=MsA holds for any iso-
morphism o of 2 over k, oA is a solution of (1.1). If we put cA=A44(s),
then A(s) is a unipotent matrix in P,. This shows that « is an auto-
morphism of K over k and therefore K is a Galois extension of k. We
can verify that A(er)=A(c)4(r) and hence G is homomorphically mapped
into U,. If A(¢)=1I, then it follows that ¢A=A and therefore o=1.
This proves that the mapping is an isomorphism. Further we find that
the order of the Galois group is a power p* of p with s<<n(n—1)/2
because the order of U, is equal to the n(n—1)/2-th power of p. We
note further that the isomorphic representation 4 of G in U, is uniquely
determined up to equivalence. Because if we choose another solution
B of (1.1), where B is non-singular, then we have B=AD with a non-
singular matrix D in P,. From this follows that

¢B=cA+D=AA(s)D=BD"A(c)D

and we have the representation D*4D.

Next we consider whether the converse of the result stated above
holds. Let K be a Galois extension of £ and the order of the Galois
group G of K/k be a power of p. Obviously there exists an iso-
morphic representation 4 of G in P, if the degree n is suitably chosen.
Here we understand that the identity of G corresponds to the unit
matrix. Since in this case there exists no irreducible representation
other than the identical representation of degree one, 4 is equivalent
to a representation consisting of unipotent matrices in U,. So we can
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assume that 4 is an isomorphic representation of G in U,. Let A(s)
be the matrix corresponding to o€ G. We shall prove that there exists
a unipotent matrix A in K, such that

(1.3) cA=AA(s)

for all oeG. In fact, we choose an element ye K with Trg, r+0
and put
A=_1 S A or .
Try =

Then we can verify that A is unipotent and satisfies (1.8). Moreover K is
generated by adjunction of all elements of A to k. For, if K* be the
extension of k& generated by all elements of A, then A=A for any auto-
morphism o of K over K*. This yields 4(¢)=1I, whence we have =1
by the assumption that 4 is an isomorphic representation of G. Hence
K* is identified with K. If B is another unipotent matrix such that
cB=BA(s), then there exists a unipotent matrix C in %k, such that
B=CA. Since from (1.8) we obtain cA?=A?4(s), we have A?’=MA
with a unipotent matrix M in k,. Thus we find that the matrix M
can be associated with the extension K/k.

It should be noted that the matrix M is not uniquely determined
by a given extension K/k. In fact, if we take B in place of A as above,
then we can put B?=M*B, where M* is a unipotent matrix in £%,.
Since B=CA, we have

M*=C"MC~

where C is a unipotent matrix in k,. The matrix C*MC-* shall be called
p-equivalent to M, if C is a unipotent matrix in %,, and we call such.
a transformation of M a p-transformation. Conversely we shall show
that if two unipotent matrices M, and M, are p-equivalent, then they
determine the same extension. In fact, if we put

A =MA, B?*=M,B, C*M,.C'=M,
where A and B are non-singular, then we have
(A7'C*B)*=(A"Y)M,C*B=A"'C'B.

Hence F'=A-'C—'B is a non-singular matrix in P,. The relations B=CAF
and A=C'BF ! imply that both A and B generate the same extension.
Thus we have the following

THEOREM 1. Let K be a Galois extension of a field k with charac-
teristic p and the order of the Galois group G of K|k be a power of
p. Further let A be an isomorphic representation of G in U,, where
U, is the group of unipotent matrices of degree m with elements in.
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the prime field P. Then, to every K|k and A there corresponds a uni-
potent matric M in k, uniquely up to p-equivalence such that the
matrie equation

(1.1) X*=MX

determines the extension K and that a unipotent solution of (1.1) yields
a representation equivalent to A. Conversely, to every wunipotent
matric M in k, there exist a wunique Galois extension K of k and
a representation A of the Galois group of K|k in U, such that M 1s
associated with K and A by the correspondence mentioned above, where
4 is determined uniquely by M up to equivalence.

2. Decomposable matrices and canonical form

Let a unipotent matrix M in k, be associated with a Galois extension
K over k. We can write M in the form

M:[M; M]
O M2 i
Then M, and M, are also unipotent. If the matrix
a-[A 4]
0 A,

is a unipotent solution of the equation X?=MX, then we have A,*=M,A,
and A,’=M,A,. By Theorem 1 we find immediately that M, and M, are
associated with two intermediate extensions K, and K, respectively. If
4 is the isomorphic representation of the Galois group of K/k determined
by Theorem 1, then we can put '

A A
A:[ 1 12]
0 A,
and we have cA,=A,4,(s) and cA,=A,4,(c). Therefore 4, and 4, are
the isomorphic representations of the Galois groups of K /k and K,/k
respectively. We note that when M,=0 we have K=K, K,. Because

then we can choose A such that A,,=0. A matrix M is called p-decom-
posable if it is p-equivalent to a matrix of the form

0

0 M2 ®

We can prove that M is p-decomposable if and only if the representation
associated with M is decomposable. More generally we obtain the following

THEOREM 2. If a representation A of the Galois group of the
Galois extenston K|k associated with a unipotent matriz M is decom-
posable such that
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0 0 -+ A4,

then M is p-equivalent to a matrix of the form

M, 0 -.- 0
0 M, --- 0
0 O - M,

such that the extensions K|k associtated with M, have the isomorphic
representations A; of their Galois groups and that K=K, K,---K, holds.

The proof runs as follows. In the course of the proof of Theorem 1
we see that we can find a unipotent matrix A in K, such that cA=A4(c)
for all 0 € G and that A is of the form

A, 0 -+ 0
A 0 Ay e 0

Hence we have oA;=A;4,(c) and from this we obtain unipotent matrices
M; such that A,*=M;A;. If we put

M, 0 -+ 0
el 0 My oo 0

-------------

then we have A?=M*A. By Theorem 1 we conclude that M* is p-
equivalent to M. Further it is clear that K=K K,--- K, holds.

Next we consider an invariant property of a unipotent matrix M
under p-transformations. We use the notation fx for 2?—x as usual
and denote by £k the set of all elements px with xe k. Obviously fk

is a subgroup of the additive group k. Since for any element p in the
prime field P

ppx = pa’® — px =(px)” — px = P(0x)

holds, Pk is a vector space over P. Let m,;;.,, t=1,--+,n—1, be the
elements lying in the line next parallel to the principal diagonal of M.
We use the abbreviated notation m,; for m,,.,. We consider the vector
space S over P generated by m,;, 1=1, ---,n—1, and k. Then we find
that this vector space is invariant under p-transformations of M. In
fact, if C*MC*=M’, then we have

p —_— 14
Cliv1 My i1 =M 5411 C; 541
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The consideration above suggests that we can define a canonical
form of M in the following manner. A unipotent matrix of the form

1 m 0 0
0 1 m 0 ---
0 0 1 my ---
0 0 0 1

where the elements m,, are all zero whenever j—4>1, while the elements
m;, t=1, --., n—1 are all non-zero, shall be called a canonical form for
a unipotent matrix. We shall prove by induction on the degree n that
every unipotent matrix M can be transformed into a canonical form by
choosing a suitable p-transformation, if the field % is infinite. When
n=2, we can choose ¢ €k such that m,=fc+m,#0. Putting

o al

1 m,
come==| u
o ol

we have

Hence the assertion is true when n=2. When n>2, we put

L KT

where M, is of degree m—1. By induction hypothesis we can find
a unipotent matrix C, in k,_, such that M,/=C,*M,C,™* is canonical and
that m;/+0, v=1, ---, n—2. Putting

s il

M/ *
C*p C*_1=[ 1
i )

we have

Hence, by the transitivity of p-equivalence we can assume from the
beginning that M, is canonical with m,#0, 1=1, ---,n—2. Then we
choose ¢, e k arbitrarily and next determine ¢,, ---, c,_, in k successively
such that these elements satisfy the equations

(2.1) M+ PC;=MiCi iy 1=1,2, .-+, 0—2.
We put

(2'2) Mop—1+ (Socn—l = m;;fl
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@ I, I g

| 1, cz[ w1 ] My =|

=) 0 1 o
Cu—1 My

where I,_, signifies the unit matrix of degree n—1. From (2.1) and
(2.2) we obtain

M,+I*=M,T+ M, .
Then we get

o MZ[MI Mz—f—l”’]:[Ml MJ’—{—M;]
0 1 0 1

S AT

0 1 0 1 0 1 .

It remains to prove that we can choose ¢, such that m,_#0. For this
we replace ¢, by « in (2.1) and consider m,_, as a polynomial of x over
k. Since the coefficients of this polynomial are not all zero, the asser-
tion is true by the assumption that & is infinite. We note that in the
above proof we never use the fact that M is p-indecomposable. Therefore
a canonical matrix is not necessarily p-indecomposable.

When M is of a canonical form, then a unipotent solution A=(a,,)
of the matrix equation X*=MX can be obtained by

P ;=M

1=1,2, .-, n—1; j=i+1, -+, m

These equations are often convenient when we deal with the Galois
extension associated with M.

3. Intermediate extensions and their Galois groups

We consider intermediate extensions between k and K when K is
associated with an arbitrary unipotent matrix M in k,. Among them
we investigate only those which shall be used later. Let A(c)=(A o))
be a representation of the Galois group G of K/k in U,. The set G,
of all o€ @G, for which 2;,(c) vanish whenever v=j—4=1, is a subgroup
of G. Because from the relation

1“(0' T) = _Zm(o‘ )lkj(r)
i<k<j
we see that if v=j57—4=1 and o, 7€G, then v=k—1t, v=5—k and
therefore 1;,(cv)=0, whence we have ¢r€ G,. When »=0, we put G,=G.
Let A=(a;,) be a unipotent solution of the matrix equation X?=MX
and K be the extension of k& generated by adjunction of all elements
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a;; with v=7—1¢ to k. We shall prove that G, is the Galois group of

K/K™,
From cA=AA(s) we have
(3.1) O'a“:. Z _a,;k/l,”(o)
1<k<g

and we find that if v=5—1 and s €@, then oca;;=a;,. Therefore every
element in K™ is invariant under any automorphism o € GG,. Conversely
suppose that all elements of K™ are invariant under an automorphism
re(G. It suffices to prove that by induction on » that r belongs to G,.
This is clear when v=0 if we put K“=Fk. Since K* is a subfield of
K™, we have re€ G,_; by induction hypothesis and from (3.1) we obtain

O iy =T iy = iy 25, 505(T)

Hence we have 2;;,,(r)=0, t=1, ---,n—y, whence follows that r belongs
to G,. This concludes the proof of our assertion.

We see that K™ are Galois extensions of k£ by virtue of (38.1) and
therefore G, are normal subgroups of G. Furthermore we find that the
Galois group G,_,/G, of K®/K®™ is abelian of type (p,--:,»). This
follows from the fact that

KW) :K(Vﬁl)(al,lﬂn M) an—v.n) ’

Pl i) = 20 My ,€ KO,

i<j<t+y
In particular we have
K® :k(am’ Qgy ***y an—l.n) ’
Plat, i) =m; .

This shows that the vector space S generated by m,; and Pk determines
K® completely. We remark further that K® are invariant under p-
transformations of the matrix M. Because if A’=CA, then A=CA’

and

7 ’ ’
Aij= 2> CinlQlyys Aiy= >l Cilly5
i<k=j i<k<j

with elements ¢;, and ¢, in k. Therefore the extension generated by
adjunction of all «j; with v=j—1% to k is equal to K™. The following
lemma will be used in the next section.

LEMMA. G,_,/G, lies in the center of G/G,.
If 0e@G,_, and se G, then we have

2i,i1(08) =2;,44(0) +2;.5+4(8) Zij(o-s) =2;;(s) when v >j—1.
2i,5+5(80) =2 i4(8) +4s,500(0) ,  A;/(80)=24;(s) when v >j—1.
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From these relations follows that A;;(cs)=4;;(s¢) whenever v>j—¢. This
shows that the assertion is true.

By this Lemma we see that K™ /k ié a central extension of K /k.

4, Determination of the Galois group of the Galois extension associated
with a given unipotent matrix

For a given unipotent matrix M in k, we consider the vector space
S over P generated by m,;, i=1, ---,n—1, and fk. The elements m,,
1=1,+++-,n—1, are said to be linearly independent over P mod §fk, if
m;+k, 1=1, ---, n—1, are linearly independent over P in the quotient
space S/fPk. The problem how to determine the Galois group G of the
Galois extension K[k associated with M is much related to the properties
of the vector space S/Pk. But, since this problem is complicated in the
general case, we shall prove only a theorem concerning the most important

special case when G is isomorphic to the full group U, of unipotent
matrices in P,.

THEOREM 3. In order that the Galois group G of the Galois ex-
tension K|k associated with a wunipotent matric M be isomorphic to
U,, it 1s necessary and sufficient that m;, i=1, ---,n—1, are linearly
independent over P mod pPk.

From arguments in the preceding section it is clear that we have

[K(v) : K(v—l)]épn—v , [K : k] znl:[l [K(v) : K(v—l)] .
y=1

If m;, 1=1, ---,n—1, are linearly dependent over P mod pk, then we
have [K™ : k]<p™* and therefore [K : k] is less than the order of U,.
This shows that the condition is necessay. Let A=(«;;) be a unipotent
solution of the matrix equation X?=MX. In order to prove the suf-
ficiency of the condition, we first observe that k(«;;.,) cannot be con-
tained in the extension generated by adjoining all «; ;,, except «;;+, to
k. If it were so, we would have

-
ai,i+1_—%&_{ Pi; i €K
iFi

with p;e P by the well known theory. Since p(«; ;.,)=m,;, it follows
that

mi— 2 pim; € Pk .
JFi
This contradicts the condition. Hence we can choose 0'€G such that
o ;1) F Ao and o(aj j4) =0 ;41 When j#14. Thus there exist o;€G,

1=1, -++, n—1, such that

Ai,i0(0) =655
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where by A,;(c;) we denote the elements of A(s;) and where ¢;;=1 and
0;;=0 if j#¢. Next we shall show by induction on v that there exist

;" e @G, 1=1,2, e, n—v—1; v=0,1, -, n—2
such that
4.1) 4j.54v1(0) =045
When »=0, we can put ;' =0, and the assertion holds. Supposing that

there exist «;"YeG,,, 1=1, ---, n—v, satisfying the above requirement,
we put

" =0," Voo ) ol 1=1,2, -+, n—v—1.

These elements belong to G, by the Lemma in the preceding section.
If we take into comsideration the fact that 2;;.,(¢;*)=0 whenever
A<y, we have

(4.2) Ai,i+vi(0: "V oigy)
=2, 54v+1(: ") F 25 54v—1(0509) 25, 505(05 Y ) 40, 4v1(0i4v)

- =5,i4901(0 ) 25 v ia(0i) + 055

(4.3) ETOR (A )
:Aj,j+v+1(0-i+v) +2j,j+V+1(‘71}W—1)) + '{j.j+1(0'1;+v)'1j+1,j+v+1(0'i(y~1))

::'{j,j+v+1(0'1;+v) +'2j,j+v+1(0‘i(v_1)) .

0 r ha d S e 0_1( 1)()‘- 3 _'_‘O-(v)o- o (v—1) and Z ;e ’(1) ~[V))
J 1( v )C ‘L+V) _27‘ 743 ]((T'“ )0-. o (V“l))

=i, 44v2(0:") F A5, jrv11(ia00: ")

Then from (4.2) and (4.8) follows that o, satisfy the condition (4.1).
Now, if r=0¢,"%¢,"%... belongs to G,,,, then by (4.1) we have

'{j,j+v+1(7):3j:0 ’ .7‘_"—“17 2; *t 0y n—y—1.

Therefore the order of G,/G,., is not less than >~ and from this we
infer that the order of G is equal to that of U,. This concludes the
proof of our theorem.

When G is isomorphic to U,, we see from the proof of the above
theorem that G, is the commutator group of G and therefore K™ is the
maximal abelian subfield of K/k. Furthermore the subgroups G,, »=0,
1,---,n—1, of G constitute the descending central series of G and
therefore K is the maximal subfield of K such that K™/k is a central
extension of K" V/k.
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