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There are several researches® on a normed space N with the ex-
tension property: each continuous linear function f on a subspace of
any normed space with values in N has a linear extension f’ on the
whole space such that [f|=[s"|. Among those, the following result
has been obtained by L. Nachbin [4]; a normed space has the extension
property if and only if the collection of all its spheres has the binary
intersection property. The collection U of all spheres is said to have
the binary intersection property if every subcollection of u, any two
elements of which intersect, has a nonvoid intersection.

In this paper, we shall give a convenient definition of extension
property of locally convex topological vector spaces. Of course the
property must be a generalization of the usual extension property.
Theorem 1 gives a necessary and sufficient condition in order that a
locally convex space should have the extension property in our sense
which corresponds with Nachbin’s result. Theorem 2 gives a charac-
terization of a locally convex topological vector space having the exten-
sion property. '

A vector space E is said to be a topological vector space if K is a
Hausdorff space in which the vector operations, summation and scalar
multiplication, are continuous for the topology. Moreover, if the neigh-
bourhood system in a topological vector space consists of convex sets,
then E is said to be a locally convex topological wector space or a
locally convex space. In this paper, the neighbourhood system in a
locally convex space is always assumed, without loss of generality, to
consist of symmetric, convex closed sets. We shall denote by R the
real space (—oo, + ) and {x; P(x)} the set of all the elements with
the property P(x).

1. Definition of the extension property

Let E be a locally convex space and & be a subbase, consisting of
convex, symmetric and closed sets, for a neighbourhood system of the
zero point of E. If, for two elements: W and W’ of &, we can find
positive numbers 1 and g such that AWC W' and pW’'C W, then we

1) For example, L. Nachbin [4], D. B. Goodner [2] and J. L. Kelly [3].

2) If A and B are subsets of E and 1 is a real number, then A+B and 14 denote
respectively the set {a+b; a€ A, b€ B} and {ia; a € A}. :
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shall say that W _and W’ are equivalent to each other and shall denote
it by W~W’. Evidently the relation ~ satisfies the equivalence law,
by which & can be divided into classes, the set of the representative
elements of which, denoted by B, will be called a fundamental base
in K. Since the definition depends on a neighbourhood system, a sub-
base and representative elements, there are many fundamental bases
coming into considerations in one locally convex space. For example,
let B, be the class of two sets {(z, ¥); —1=<x=<1, ye R} and {(%, v);
—1=<y=<1, xe R} and let B, be the class of one set {(z, y);.x*+y*<1}.
Both B, and B, are the fundamental bases in the two-dimensional
Euclidian space R®. If Be®B, xe E and e R then uB+x is called a
B-figure and two B-figures denoted by ¢,B+x, and p,B+x, (x,, 2, € K,
U, 1 € R) are said to be similar to each other. Evidently above B-
figures are similar to B.

The following definition is a generalization of the binary intersection
property by L. Nachbin [4]. A fundamental base B in E is said to
have the binary intersection property if an arbitrary collection of 8-
figures whose every two similar B-figures intersect has a nonvoid inter-
section. For example, the fundamental base B, in R® defined above
has the binary intersection property and 2B, has not.:

Let L be a locally convex space, L’ a proper subspace and I’ a
continuous linear operator from L’ into E. Let B be a fundamental
base in £ and 2B, be a neighbourhood system in L. From the conti-
nuity of I’, there exists, to each Be®B, a neighbourhood 7(B) in L such
that

(1.1) I(T(B)NL')CB .

The relation between B and T(B) gives us a mapping from B to ;.
Let (3B, ') be the class of all such mappings. Fixing one mapping T
of ¥(%B, l’), the linear operator I’ is said to have a T-continuous exten-
sion 1" if 1" is a linear extension of I’, where I” is a linear operator
on L" with L' DL’ satisfies I =1" on L/, and furthermore I"(T(B)NL")CB
for every B of ®B. The T-continuous extension of !’ is obviously con-
tinuous. A fundamental base B in E is said to have the extension
property if every continuous linear operator I’, defined on any subspace
L’ of any locally convex space L, always has a T-continuous extension
on L for every mapping 7 in Z(B, I'). If the fundamental base with
- the extension property exists in £ then E is said to have the extension
property. If N is a normed space then the following proposition (a)
and (b) are -equivalent to each other;

(a) N has the extension property in a usual sense mentioned at
the begining of this paper,

(b) the fundamental base consisting of only the unit sphere in N
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has the extension property.

Therefore, it is easy to see that if a normed space N has the extension
property in a usual sense then N has the extension property in our
sense. On the other hand, we can find the normed space which has
the extension property in our sense and has not the extension property
in usual sense. For example, n-dimensional Euclidian space R"” has the
extension property in our sense but not the extension property in a
usual sense. Let us remark here that the extension property of E is
a topologically invariant property. '

. Now, we shall state our main theorem.

Theorem 1. A locally convex space E has the extension property
iof and only if the space E has the fundamental base with the binary
intersection property.’

2. Proof of sufficiency

Let B be the fundamental base with the binary intersection pro-
perty. We shall prove that the fundamental base %6 has the extension
property. Let I’ be a continuous linear operator defined on a subspace
L' of a locally convex space L and T a mapping from B into a
neighbourhood system B, in L such that, for every element B of 8,
the image T(B) of B satisfies (1.1). In this section, our purpose is to
show that I’ has a T-continuous extension on L, which will be established
in two steps.

The first step. We shall show I’ has a T-continuous extension on
{L, s} ={s’'+4s,; s’ e L', e R}, where s,e¢ L and s,¢ L’. Let (') be
the set of all B-figures such that pB—1'(s") where s,+s" € pT(B), Be®B.
For each Be®B, every two B-figures p,B—1'(s)) and pg,B—1'(s;) where
s;+s e, T(B) and s,+s;€ #,T(B) have at least a common point, since
we have s;—s,=(5:+8,) —(82+8) € (sl + 1)) T(B) and

V(s)—U(sD=U(si—s)e(ml+|m)B=mB—mB .

B having the binary intersection property, all the B-figures in W(I')
have a point in common. Denote this common point by S and define
an operator [ on {L’, s,} by the following equality,

U(s'+2s,) =U(s)+28 .

By this definition, we see immediately that the operator ! is a linear
and T-continuous extension on {L’, s.}.

The second step. We shall show !’ has a T-continuous extension
on L. Here, we shall make use of the transfinite method. Let I, be
a linear operator which is a T-continuous extension of I’ on L, where
L, is a subspace of L containing L’. We define the order < in the
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set ¥ of all such operators [,, « € A, by setting [,<l; if and only if
(i) L,cLg,
(ii) g is a T-continuous extension of 1.

Under this ordering every totally ordered set {l,; a€ A’C A} in £ has

an upper bound determined by the linear operator [, on UL, defined
a€ 4’

by setting ly(s)=1.(s) when se L,. Then, by Zorn’s Lemma®, £ has a
maximal element [, Let L, be the domain of [,. We shall prove that
l, is a T-continuous extension on L. If L#L, then by what is obtained
"in the first step®” we can define a T-continuous extension [, on {L,, s},
s,€ L and s,¢ L,. The linear operator /, belongs to ¥ and satisfies [, <1,
and l,#1,. This contradicts to the fact that [, is maximal. Thus, the
sufficiency is proved. :

3. Proof of Necessity. To prove the necessity, let us begin with the
following Lemma 1, 2 and 3.

A Lemma 1. Let B be a fundamental base in E. Every two B-
Jigures stmilar to B, pB+x, and p,B+x, have a common point if
and only if the element x,—ux, belongs to (|p]+ |p.])B.

The proof is easy and omitted here.

Lemma 2. Let B be a fundamental base in E and py be the semi-
norm defined by putting pgz(x)=inf {|2|; x€ AB}. Suppose for every
element B of B there exists a non-negalive function ry with the fol-
lowing properties :

(2.1) ra(@)+7rs(y)=pes(r—1y) when x,yek,
(2.2) |rs(@)—rs(p)|=Sps(e—y)  when w,yek,
(2.3) 7rzQxz+A—Dy)Ars(x)+(1—D)rx(y) when x,ye E and ogzgl.

Suppose further that the class of all such functions {ry; Be B} has the
property such that

(2 4) for every element. x in E, there is a functwn ’V‘B in the class
' satisfying ry(x)>0.

Then, choosing an abst'ract element & (of course not contained im E),
we can define a semi-norm py on {E, & =E, such that

(2.5) palx—&)=1rz(x) when wek,

3) & is nonvoid.

4) Since ly is T-continuous extension of U/, lu(T(B)NLw)CB, the mappmg T belongs
to i(% lm)
" 5) See J. W. Tukey {5, p. 7].

6) The result in the first step is applied to arbltrary element of 2.
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(2.6) BNE=B  where B={Z; p,(x)<1, xc K}
and

(2.7 {E, €} s a locally convex topological vector space with the
topology induced by the class {py; BeB} and has E as a
topological subspace of {E, £}.

Proof. Define p, by setting

Ars(—%) when 2%0,
oala+18)= (=7)

es(x) when 21=0,

where xe E, e R. We can prove that p, is a semi-norm by the same"
methods used in the proof of Nachbin’s Lemma 1 [4]. Thus the pro-
perties (2.5) and (2.6) immediately follow. From the property (2.4) we

observe that the topology of E defined by {p,; Be®B} satisfies the
separation axiom, whence we have (2.7).

Lemma 3. Let p be a semi-norm on E and 2 be the function on
E such that M(x)+2A(y)=p(x—y) for every x,yec E. Then there exists
- a function r on E with the properties (2.1), (2.2) and (2.3) and
r(x)<A(x) for every xe K.

As the proof is easily obtained following after that. of Nachbin’s
Lemma 2 [4], it is omitted here.

We assume that B has the extension property, that is, every con-
tinuous linear operator ! defined on any subspace of any locally convex
space always has a 7T-continuous extension for every mapping 7T of
E(B, 1). We have to show that this fundamental base has the binary
intersection property. Let 11 be a collection of *B-figures whose any
two similar B-figures of 1 have a common point. Let 1; be the col-
lection of B-figures similar to B in U. If U, is empty then let U=
{B}”. Let A, be the subset {z; zB+2xe1l,} and & be a fixed element
in A;. We shall define a non-negative function 1; on E as follows,

inf {|2]; AB+x e U} when ze€ A;,

Ag(x)=
(=) { A5(E5)+ pu(—E5) when 2eE and z¢ A4, ,

where p; is the semi-norm defined by pz(x)=inf {|2|; x€ 2B}. Now, we
shall show that the function 1; has the property (2.1), that is, for every
x, Yy € K, holds : '

x—y € (1x(2)+2:(y))B

7) {B} denotes the class of one element B,
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the proof of which is established in three cases (i), (ii) and (iii). (i) both
and y are contained in A,. By the definition of 2, for every ¢>0, there
exist numbers 1 and g such that Az(x)+e>A=2(x), A:(y)+e>p=2(y)
and AB+x, uB+yel,. Since every two elements of U, intersect, we
have z—vye (A+#)BC(x(%)+2(y)+2¢)B by Lemma 1. But as B is
closed, we have x—y e (45(x)+2x(»))B. (ii) both x and y are not con-
tained in A,. By the definition of 1, 1;(2)=px(x—&;) when ze E and
2¢ A;. Hence £;—z¢ A5(?)B. Therefore Az(x)B+x and 2x(y)B+% have
the common point &;. By Lemma 1, we have xz—ye (1x(x)+ 15(y))B.
(iii) « is contained in" A; and y is not. Since z—y=(2—£&z)+(&;—y)
and z, &€ A, and by (i), x—y belongs to (Ax(%)-+25(£2))B+ ps(€s—y)B.
Using the convexity of B, we have x—y e (Ax(x)+ (15(&s)+ps(E:—¥))B
=(A5(x)+A5(y))B. Thus we have proved that i; has always the property
(2.1).

Next, let us consider the collection U, of B-figures represented by
A5(x)B+2x where Be®B, xe E. If the collection 11, has a nonvoid inter-
section then U has also. So we have only to show that 1, has a non-
void intersection. By Lemma 3, there exists a non-negative function
ry with the properties (2.1)—(2.8) satisfying Az;=7, for each Be®B. If,
on one hand, {7;; Be®B} has not the property (2.4), that is, there is
an element x, of E such that 7rx(x,)=0 for all 7, then by x,—=z
€ ps(x,—2)BC (ra(x,)+7rx(x))B=rx)B, x, is easily seen to be a common
point of rz(x)B+x for all xe £ and Be®B. Since rx(x)B+axCixx)B+2
holds for all e E and Be®B, 1, has a 'nonvoid intersection. On the
other hand, if {rz; Be®B} has the property (2.4) then we shall be able
to make use of Lemma 2. That is, if ¢ is an abstract element, ¢ ¢ E,
then we can consider a locally convex space {F, ¢} with the topology
induced by the class of the semi-norms having the properties (2.5) and
(2.6) and has E as a topological subspace of {E, {}. Now we shall make
use of the hypothesis that B has the extension property.. Let e be the
identity mapping on E and 7' the mapping on B to the neighbourhood
system in {E, ¢} defined by T(B)=B. The mapping e is a continuous -
linear  operator on a subspace E of a locally convex space {F, {}.and,
by the property (2.6) T is contained in (B, ¢). Then we have a T-
continuous extension & on {E, ¢}. Hence, ¢(%) € B when e T(B)=B,
and e(—z+8)eps(—x+C)B. If xeE then py(—x+8)=rxx) by the
property (2.5) and e(—x+¢)=e(¢)—x. Therefore, ¢({) belongs to all
the B-figures rx(x)B+x for xe E and Be®B.- Since 1z(x)B+2x contains
rx(x)B+x, all the B-figures in U, contain the element ¢(¢) of E. Thus
the proof of the theorem is completed.

' According to the process in the proof of Theorem 1, the following
corollary is immediately obtained.
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Corollary 1. A fundamental base B has the extension property
if and only if the fundamental base B has binary intersection pro-

perty.

Specially, let £ be a normed space and B the fundamental base
consisting of the unit sphere. In this case Corollary 1 is equivalent to
the result of L. Nachbin, cited at the beginning of this paper, containing
Hahn-Banach’s extension theorem® as a special case.

4. Characterization of a locally convex space with the extension
property. To each index ae A let E, be a locally convex space. The
Cartesian product /1E, is said to be a topological product of E,, if its
topology is defined by taking, as neighbourhood system in I[IE,, the
collection of all sets U=II1U, where each U, is a neighbourhood in E,
and where U,=F, except for a finite set of indices a. The space IE,
is known to be locally convex. ’

Lemma 4. If E, has the extension property them the topological
product IIE, has the extension property.

Proof. To each index a e A there exists by Theorem 1 a funda-
mental base B, in K, with the binary intersection property. Let B be
the collection of neighbourhoods B in IIE, such that B=IIB, where
B,=E, except for an arbitrary index « in A and where B, is an ele-
ment of B,,. It is easy to see that B is a fundamental base in ITE,
with the binary intersection property. From Theorem 1 I1E, has the
extension property. 4 .

By Lemma 4, it follows immediately that if a locally convex space
E is equivalent as a topological vector space to the topological product
of normed spaces with the extension property then E has also the
property. Is the converse true? The question is answered affirmatively.
That is, if £ has the extension property then E is topologically equiva-
lent to the product space of normed spaces with the extension property.
In order to prove this, we shall first prove some lemmas.

A locally convex space E is said to be complete, if every Cauchy’s
directed family in E converges to an element of E®.

Lemma 5. A locally convex space E with the extension property
18 complete.

Proof. Let E be a complete locally convex space containing F as
a dense subspace and let {z,} be a Cauchy’s directed family in E. In
general, the existence of completion E of E is well known'”. The

8) S. Banach [1].
9y See J. W. Tukey [5].
10) See J. 'W. Tukey [5, pp. 65-70].
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family {x,} converges to % of E. By the hypothesis, the identity
mapping ¢ on K has a continuous extension ¢. Therefore, ¢(x,) con-
verges to ¢(Z). Since e(x,)=e(x,)=2, and e(Z)e E, by the uniquenses
of a limit, we obtain that Zz=¢&(%) is contained in E. Thus Cauchy’s
directed family {x,} converges to e(x) of E.

Let E be a locally convex space and B a fundamental base in E.
The following facts are generally known. Fix an arbitrary B of 8.
Let pp be the semi-norm defined by setting p,(x)=inf {|4|; x € 1B} and
let Op be the set {x; pz(x)=0}. Since O; is a subspace, we can consider
the factor space E/Oj that is the set of cosets of O, which is the col-
lection of all sets of the form x+0O, where xeE. Let =, be the
natural mapping on E to E/O; defined by nx(x)=x+0,. The algebraic
operations in FE/O, is defined by the equations mz(x)+7mx(y)=nz(x+vy)
and Arg(x)=ns(Az), and the norm | [ in E/O; is defined by putting
|7s(x)| s=ps(x). Thus the factor space FE/O, becomes normed space.
Let us denote such normed space E/O, by N;. Now, consider the
topological product I/Np of normed spaces N, for all Be®B. Then,
there exists a linear homeomorphic mapping ¢ from  E onto the sub-
space ¢(E) of IIN;. The mapping ¢ is defined by (x)= {mz(x)} € Il N;.
In general ¢(F'), is not necessarily equal to /I Nj.

Lemma 6. If E has the extension property then, for some funda-
mental base B in E, the normed space Ny also has the extension pro-

perty.

Proof. Let B be the fundamental base in EF with the binary inter-
section property and B; be the class of the unit sphere in N, It is
easy to see that, by the binary intersection property of B, B, is a
fundamental base in N with the binary intersection property. Hence
N; has the extension property by Theorem 1.

. Let a locally convex space E have the extension property. By
Lemma 6, there exists a fundamental base B in E such that, to each
Be B, N; has the extension property. By Lemma 5, E is complete and
since ¢ is a linear homeomorphic mapping, ¢(F) is also complete.
Therefore, to prove ¢(E)=IIN, we need only to show that ¢(F) is
dense in /TN, Let {x;} be an element of IIN, and U be a neigh-
bourhood in IIN,. Our purpose is to show that there exists an element
x of E such that ¢(x) e U+ {x5}. The neighbourhood U is the set II1U,
where Uy, is a set {x3,; [25,)s,=4;, ;€ R} for B,e®, j=1,2,--+, n
and Uz;=N,; except for B=B,, j=1,2,.+--, n. On the other hand,
since B has the binary intersection property and the collection {,B,
+Ys,; 75 Ys)=%5; A€ R, j=1, 2, -+, n} is the set of B-figures, any
two of which are not similar to each other, all B-figures Zij+yBj have
a common point « of E. Hence we have n;(x)e n5(4,B;+ys,)=4;75(B,)
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+xBj=UB,.—|—xBj for all 7=1,2, .-+, n. This shows that xe U+ {x;}.
Thus we have proved the following

Theorem 2. A locally conves space with: the extension property

18 equivalent, as a topological vector space, to the topological product
of mormed spaces with the extension property.

(1]
(2]

[3]
14]
(5]
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