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Recently we have defined an almost-Hermitian space which is a
generalization of a Kahlerian space and called it a K-space [4]V. A K-
space is characterized by the fact that the associated tensor field ¢,
is a Killing tensor. An example of the non-Kahlerian K-space is given
by a six-dimensional sphere S® by virtue of the structure defined by
Tukami, T. and S. Ishihara [1]. '

On the other hand, we have discussed in detail infinitesimal
holomorphically projective transformations in K&ahlerian spaces.[5].
In an almost-complex space, such a transformation has been defined
in the case when the affine connection under consideration is a ¢-
connection. But in a K-space such transformations are defined naturally
in terms of the Riemannian connection which is mnot necessarily a o-
connection.

In this paper we shall generalize some results in [b6] to K-spaces
and, in the last section, see a fact that on the S°® as a K-space an
analytic infinitesimal holomorphically projective transformation is
necessarily an isometry.

§1. K-spaces. In an z dimensional space, an almost-complex
structure is defined by assigning to the space a tensor field ¢/ such
that ¢, ¢, /=—0,/ Then an almost-complex space, i.e. a space with an
almost-complex structure, is necessarily of even dimension and orient-
able.

The tensor N, defined by

jih = gojr(a'rgpih - aigprh) - ¢ir(ar¢jh - ajgorh) ’ a_7' = a/axj ’
is called the Nijenhuis’ tensor of the almost-complex structure ¢/

~

1) The number in brackets refers to the Bibliography at the end of the paper.

2) As to the notations we follow Tachibana, S. [4]. We shall express any
quantities in terms of their components with respect to natural reperes /3 %, where
x% denotes local coordinates. Indices run over 1,2,---, n=2m. '
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A vector field »* is called é.lmost—analytic or analytic [4] if it.
satisfies

Lo/ =00,0,— /00" + ¢ 00" =0, -

- where £ denotes the operator of Lie derivation with respect to »'.

v

If a Riemannian metric (positive definite) tensor g, satisfies
Zrs® 0 =g, then it is. called that the pair (g;, ¢) assigns an almost-
Hermitian structure to the space. A Kihlerian structure (g, ¢) is
an almost-Hermitian one such that p;p*=0. In this case the tensor
field ¢;=¢/g,, is harmonic and at the same time a Killing tensor.
An almost-Kahlerian structure is an almost-Hermitian one such that
@;; is harmonic. Hence an almost-Kidhlerian structure is a generaliza-
‘tion of a Kéihlerian one.

An almost-Hermitian space is called a K-space [4] if ¢, is a
K_illing tensor, i.e. it satisfies the equation

1.1) Vy¢zh+7z§0]n—0

where p, denotes the operator of the Riemannian covarlant derivation.
A K-space is another generalization of a Kéihlerian space.

In this paper we shall be only concerned about K—spaceo and as-
sume that n=2m> 2.

§ 2. Preliminaries. Let us consider a K-space whose structure
- is given by (g, /). We denote the Riemannian curvature tensor by
Ry;* and put

R;=R,;", Rijin=Rij’&m » Ry=(01/2)¢"R.iu9" »
then the following identities are known [4]
(2.1) R0/ ¢ =Ry,
(2-2_) PPl =Ry, Ri=R}.

The Ricci’s identity for a tensor ¢* is given by
Pl @l =7 7@ =Ry al — Rujia -

If we put

(2.3) - =gt T Ryl

for a vector, the following identities are valid [7]

(2.4) t%;ngpih—lev£¢ih:tjrh¢ir_tjir¢rh ’

(2.5) %3 Ry =yt — v ited" -

‘For a vector field »* we shall define N(»), by



December 1959 On Infinitesimal Holomorphically Projective Transformations 47

N@),=(1/4) Nuwrv"

where we have put N,,=N,"g,; and pt=gtp,. Since our space is gi,
K-space, it obtains easily that.

(2.6) N@);=¢/(7:9:) PV° -

In terms of these quantities, the following theorem is known [4].

Theorem. In a compact K-space, a necessary and sufficient condition
for a vector field v* to be analytic is that
(2.7) ’ prot+ R =0,
(258) (Rw Ri'r) v+ ZN(U)?,—O

A vector field »* is called an 1nﬁmtest1mal holomorphically  pro-
jective transformation or, for simplicity, HP-transformation, if it
satisfies '

(2.9) ti' = £/} =00 + 00" — 0308 — bip)"

where p, is a vector and 7, =¢,p,. We shall call p, in (2.9) the as-
sociated vector of the HP-transformation.
Contracting (2.9) with respect to ¢ and %, we get

(210) p:={1/(n+2)} gy, ,

which shows that o, is gradient.
In particular, if p,=0, then the HP- transformatmn is an infini-
tesimal affine transformation.

§ 3. Holomorphically planar curves. In a K-space, let us consider
a curve x'=x%¢) which satisfies the following differential equation

2 i h J
(3.1) d’x" TN dx’ dx' _ , dx n 4%

ar’ dt dt dt dt

where a and g are certain functions of the parameter ¢
We shall call such a curve a holomorphically planar curve. The
curve is characterized by the fact that the field of planes spanned by
i'=dx'|/dt and ¢/%’ are parallel along the curve. If we take the arc
length s as the parameter, (3.1) becomes the following form
d’x" dx dxt - n dx?

s s =99, ds

Hence we have another characterlzatmn that the first normal of the

curve is =+ ¢/ (dx’/ds). :
We now ask for the condition that an infinitesimal point trans-

formation x*—x'+ e’ transforms any holomorphically planar curve

?

+ {J z}
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into such a curve, ¢ being an infinitesimal constant. It is easily seen
that a necessary and oufﬁc1ent condition for a vector ﬁeld v to be
such a transformation is that the equatlono

(3.2) L of=axt+be/ A,

(3.3) S Ak 7 iand 22 A o [ o
are valid for any direction %', where @, b, p and ¢ are some functions
of x' and A’

Now let »* be such a transformation, then from (3.2) it follows

(3.4) é‘: @;=
by virtue of Lemma 1 in [5, Appendix I]

Next from (3.3) and Lemma 3 in [5, Appendix I], we have
(3 5) ti=0,0"+ 00" +0;0"Fo,0,

where p;, and o, are vectors.
On the other hand, if we substitute (3.4) 1nto (2.4), then we get

‘:g Vi =t —t; o

from which we find that g/%,*=0. .
Substituting (3.5) into the last equation, we obtain ¢,= —0;; Thus
we have

Lyl =000+ 0,0 — 0,0 —0:9" -
Consequently the vector »* is analytic and at the same time an HP-

transformation. Since the converse is obvious, we obtain the following

Theorem 1. In a K-space, in order that an infinitesimal transforma-
tion carries any holomorphically planar curve into such a curve, it is neces-
sary and sufficient that it is an analytic HP-transformation.

Consider an HP-transformation 2%, then from (2.9) we have
, _ Piy" + Ry = 00" -+ 00" — 0,0, P:‘Pjh,-
Transvectmg this with g%, we find that
ot + R =0,

from which and the well known theorem [7] we have S (Rﬁvjz)i)dag()
M

for an HP-transformation provided that the K-space M under consi-
deration is compact, where do means the volume element of M. The
equality holds when and only when 2° is parallel.
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§4. The associated vector of an analytic HP-transformation.
Let ¢* be an analytic HP-transformation, | thén it holds tvh.at
(4.1) %3 =0,
4.2) 51;}3 " ()= 'Oj61:h+ 0 — Bipi __i @,%n .
Substituting (4.2) into (2.5), we get
£ Ry =0, 740 07 30:— 0" Vibi+ @iV 10:— 93" (7105 — 7 300)
— O+ Pl 1" — 207" -

If we contract this equation with respect -to #Z and %2 and take account
of (1.1), p,0,=r.05 ¢,"=0 and p,p;”=0, then we have

43) £ Ry=—np;0:— 207970, -
Operating £ to (2.1) and making use of (4.1) and (4.3), then we find
| | £ Rji= —npjp/7,00—27 0. -
Comparing (4.3) with the last equation, we obtain
(4.4) Vi0:= 95 P70 -
Hence by virtue of (1.1) and (4.4) it holds that
Vili+V:0;= (V0 + Vi@ )0e+ (7 00— @ 0’7 105) =0,

which shows that p® is a Killing vector. Thus we have

Theorem 2. If p, is the associated vector of an analytic HP-trans-
formation, then p° is a Killing vector i.e. an infinitesimal isometry.

From (4.3) andl(4.4) we have
(4.5) L R;=—(n+2)p,0,.

§5. An Einstein K-space. In this section we shall always con-
sider an Einstein K-space with non-vanishing scalar curvature R. Let
v* be an analytic HP-transformation, then the equation (4.5) holds.
Since we have R;=(R/n) g, and £ g,=pp;+pp, it holds that

vi{vi— (1/2R) 0.} +v:fv;— (1/2k)p} =0,

where we have put k= —R/u(n+2). Therefore if we define p, by
v,=p,+(1/2k)0;, then p* is a Killing vector. Now if we put g;,=(1/2k)z;,
then ¢ is also a Killing vector, because of Theorem 2. Thus we can
obtain easily the following
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. Theorem 3. In an Einstein K-space with R==0, an analytic HP-trans-
Sformation v* is decomposed into the form

(5.1) v'=p"+0.'q,

where p' and q' are both Kzllmg vectors and ¢;q, zs gradient. The decompo-
sition stated above is unique. -

From (5.1) we get
{] z}"—£{]z}'— ]z}'—(l/zk)£{1 z}

Subst1tut1ng the last equation into (4.2), we find
(5.2) . P+ R0 =2k(0;0 ’”+pz5" 012" — B:95")

from which we obtdin-

Theorem 4. In an Einstein K-space with R==0, the associated vector
of an analytic HP-transformation is an HP-transformation.

Now let x*=x(s) be a geodesic such that p,(dx*/ds)5F=0 at a point
on it, where s is the arc length. If we define a function f(s)= o,(dx*/ds)
along the geodesic, then it follows that f”(s)=4kf(s) by virtue of
(5.2). If R<<C0, it holds that f(s)=Aexp (2v/ &k s)+Bexp(—2y &k s),
where A and B are constant. Hence we have

Theorem 5. In a complete Einstein K-space with R<<0, the length of
the associated vector of -an analytic HP-transformation can not be bounded.

From (5.2) we have
(5.3) ViV 0+ Rmmor = Zk(Pjgin +0:8m— @‘Pin“ ﬁb’?jn) .

Taking the symmetric and alternating parts of (5.3) with respect to ¢
and 7~ respectively, it holds that :

(5.4) ViV ifn :\k(loigjh, + K_)ngjz' - ‘5;%% “ggfﬁoﬁb"“ 20,8:n)
(5.5) ‘ R'rjinpr = k(pf,gjh — O BePan+ 51;501@ - ?@%h) .
If we transvect (5.4) with g%, we find

(5.6) PV eon+(R[1)0, =0 .

On the other hand, if we transvect (5.5) with ¢"¢,/, then it follows.
that .

(5.7) Ryo'=(R[n)p, -

Since o, is gradient, we have N(p);=0, from which and (5.7) it is seen
that the equation (2.8) in Theorem in § 2 is valid for p,. As (5.6) is
nothing but (2.7) for p,, we have
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Theorem 6. [n a compact Einstein K-space with R=:=0, the associated
vector of an analytic HP-transformation is also an analytic HP-transforma-
tion.

The equation (5.5) is also written in the following form.

R, jin0" =k(8i8m— &1i&m~+ Pri®in— PsiPrn+ 20,10:1)0" -
Hence applying Lemma in [5, Appendix II], we find

Theorem 7. If an Einstein K-space with R==0 admits an analytic
non-affine HP-transformation, then the vestricted homogeneous holonomy
group contains the full unitary group Un/2).

§ 6. Spaces of constant curvature. Consider a K-space of con-
stant curvature with R==0. Then the curvature tensor takes the form

Ryjin=0a(81:&in—&i8wm) » a=—R[nn-1).
Hence we have
(6.1) R%=—ag; .

Now let »* be an analytic HP-transformation and p, its associated
vector, then (5.7) is valid. If we substitute (6.1) into (5.7), then we
get (n—2)Rp;/n(n—1)=0, from which we have p,=0.

On the other hand, it is knmown [4] that there does not exist a
K-space oi_:’ negative constant curvature. Thus we have

Theorem 8. In a K-space of positive constant curvature, an analytic
HP-transformation is necessarily affine.

Corollary. In a compact K-space of positive constant curvature, an
analytic HP-transformation is necessarily an isometry.
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