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The theory of divisors on an abelian variety over the field of com-
plex numbers has been much developed by making use of the theory
of theta functions. But, in the case of an abstract abelian variety,
many problems are still left open. In the present paper we shall
- study some properties of non-degenerate divisors.

First the theorem of Riemann-Roch will be stated as follows: Let
X be a positive non-degenerate divisor on an abelian variety A of
dimension ». Then the dimension /(X) of the complete linear system
| X| is equal to (X™)/n! and also equal to (—1)""'y,(X), where (X™)
means the n-fold intersection number of X and y,(X) means the virtual
arithmetic genus of X. In the next place let A and B be isogenous
abelian varieties and let 2 be a homomorphism from A onto B. If ¥V
is a divisor on B, then two matrices E,(2"1(Y)) and E(Y) are combined
by the relation E,(A(Y))='M,(2)-E(Y)-M,(2), where [ is a prime number
different from the characteristic of our geometry. This suggests to
us that, if Y is positive non-degenerate, then l(/t;l(Y)) is equal to
v(A)UY). Actually a proof was given under an additional assumption
in a recent paper [4] by Morikawa. In §2 we shall show that this
additional assumption can be omitted. The above equality plays an
important roéle in the algebraic treatment of the theorem of Frobenius,
and we shall discuss it in a forthcoming paper. Lastly the existence
theorem of a basic polar divisor (in the sense of numerical equivalence)
on a polarized abelian Varlety will be proved.

I wish to express here my hearty thanks to Professors S. ‘Koizumi
and T. Matsusaka for their kind advices.

§ 1. Arithmetic genera of abelian varieties

Let A be an abelian variety of dimension # and let X be any
divisor on A. Then the set of points # of A satisfying X,~X is a
subgroup? of A and is denoted by &,. If &, is finite, we shall call

1) We shall use freely the notations and the results in Weil [8]. Numbers in
brackets refer to the bibliography at the end.
2) We shall show later that the group €x is an algebralc subgroup,
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X, following Morikawa [4], a non-degenerate divisor. In his paper [9],
Weil proved that a positive divisor X is non-degenerate if and only if
the complete linear system |[mX| is ample for sufficiently large m, and
that every abelian variety can be embedded in a projective space.
Throughout this paper we suppose that every abelian variety is in a
projective space. ‘

Let &(A) be the additive group of all divisors on an abelian
variety A. Then the set of divisors algebraically equivalent to zero
is a subgroup of &G(A) and we shall denote it by &,(4). We shall say
that a divisor X is numerically equivalent to zero if there exists an
integer m==0 such that mX==0 (mod. 8,(4)); obviously the set of
divisors numerically equivalent to zero is a subgroup ®&,(A4) of &(A4) con-
taining &,(A4). It is not so difficult to see that the numerical equivalence
coincides with the equivalence = in Weil’s sense (cf. Weil [8], [10]).
It is well known that the residue group ®,(4)/®,(4) is a finite group
of order o=p7, p being the characteristic. (cf. Weil [10]).

According to the theory of dual abelian varieties, we know that
if X and X’ are non-degenerate divisors such that X=X (mod. &,(A4)),
then X~JX,/ for some point # and whence /(X)=/X'). In particular
every maximal algebraic family {X} containing a positive non-degen-
erate divisor X is complete in Matsusaka’s sense (cf. Matsusaka [2]),
i.e. each member of {X} determines a complete linear system of the
same dimension and every positive divisor algebraically equivalent
to a member of {X} necessarily belongs to {X}.

The constant term of the Hilbert characteristic function of A is
called the arithmetic genus of A and is denoted by x(A). Moreover,
for every divisor X on A, we can define the virtual arithmetic genus
x4(X) of X with respect to A as in Zariski [11]. Zariski’s notation
p(X) is related to our y,(X) by x (X)=1+(=1D""p,(X). It is well
known that if two divisors X and Y are numerically equivalent to
each other, then y,(X)=x,Y). (cf. Matsusaka [3]).

PROPOSITION 1. Let X be a positive non-degenerate divisor on an
abelz'cm variety A. If a is an integer which is sufficiently large, then we
have U(aX)=IUY) for every positive divisor Y such that Y =aX (mod. ®,(A)).

Proor. Let {M,=0,---, M,_,} be a complete set of representatives
of the residue group ®,(A)/®,(A). First we show that, if a is suffici-
ently large, then /(e X+ M,) = x(A) —x.(—aX—M,) for j=0,1,---,0—1. Let
a, be a positive integer such that the complete linear system |aX] is
ample whenever ¢ is not less than ¢, Then, by Zariski [11], Th. 5,
we can find a positive integer a(r) for each 7»,0<<r<<q, such that
leX+ M) =x(A)—x.(—aX—M, whenever g=r (mod. ¢,) and ¢ is not
less than a(r). Hence if ¢ is greater than each a(r), 0=r <a,, then
UaX+M;) = x(A) — 2 —aX—M).
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Now Y being a positive divisor in our proposition, there is 5 such
that Y=eX+ M, (mod. §,(A)). Then we have [(Y)=laX+M,;). Since
the virtual arithmetic genus is invariant by numerical equivalence,
we have [(aX+M)=UaX+M,) for 0<i,j<o—1. Therefore (V)=1[(aX).

PROPOSITION 2. Let A be an abelian variety of dimension n. Then
the Hilbert characteristic function x(A,m) is the polynomial a,[n!-m", where
a, is the degree of A.

PROOF. The Hilbert characteristic function x(A,m) of A is given
by the formula: '

x(A, m):ao( ’Z )+al (n@_l) +-ta,,

where @, is equal to the degree of A. Let C be a generic hyperplane
section of A. Then [m(C) coincides with 2(A,m) for all sufficiently
large m. Let @ be a positive integer relatively prime to the charac-
teristic p. Then, by Morikawa [4], Th. 4, we have [((@d,) ' (C))=v(ad,)-
[C). Since v(ad,)=a™ (cf. Weil [8], Th. 33, Cor. 1), we have {((a¢d,)~(C))
=a¢™{(C). On the other hand, by Weil [8] Prop. 31, (@d,) (C)=a’C
(mod. &,(A)). Now applying Prop. 1, we know that whenever ¢ is
sufficiently large /((@d,) Y(C))={a’C). Whence we have proved that
whenever ¢ is sufficiently large and relatively prime to p, {a’C)=IC)-

a™. Therefore the polynomial x(A,m) must be of the form:
2(A, m)=a,/n! -m".

'COROLLARY 1. Notations being the same as in Prop. 2, we have [C)
=‘1/n!-deg(Cul----~Cun), where the points u,---,u, are such that the inter-
section product C,+---+C, is defined.
COROLLARY 2. Let N be the dimension of the ambient projective space
“of an abelian variety A of dimension n. Then we have n! (N+1) < degree
of A. A
PROOF. This follows immediately from the fact that (C)=N+1
and Prop. 2.

As a consequence of Prop. 2 we have the following

THEOREM 1. The arithmetic genus of an abelian variety is zero.

§ 2. The dimension of complete linear systems

Let X be any divisor on an abelian variety A of dimension #
and let 2 be a field over which A is defined and X is rational. There
are n points #,,---,u, such that the intersection product XulXun is

defined, and the degree of zero cycle Xu;-“*Xun does not depend on the
choice of such points. From now on we denote it by (X™).
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PROPOSITION 3. Let X be a positive non-degenerate divisor on an
abelian variety of dimension n. Then we have [(X)=(X™)/n!.

PROOF. When the complete linear system {X| is ample, our pro-
position is nothing else but Cor. 1 of Prop. 2. Whence if ¢ is suffici-
ently large /[(aX)=(@X)™)/n!=(X")a"/n!. Suppose now that a is
relatively prime to p. Then similarly as in the proof of Prop. 2 we
have [(a’X)=[X)-a*. Hence, for such ¢, we have [(X)-a""=(X"a*"[n!.

COROLLARY 1. If a positive divisor X is reducible and at least one of
its component is non-degenerate, then (X)=2.

PROOF. Suppose that X=X +X,, X;>0 and that X, is non-degen-

erate. Then the degree of (X)), --+(X)),  +(X,), 1is positive whenever
the intersection product (Xl)ul""'(Xl)un_l'(X2)un is defined. Therefore
(X™) = (XM) +1. | |

COROLLARY 2. If X is a reducible positive divisor on a simple abelian
variety, then [(X)=2.

PROOF. Since every positive divisor on a simple abelian variety
is non-degenerate (cf. § 3), this follows immediately from.Cor. 1.

Now we need the following '

LEMMA 1. Let A and B be isogenous abelian varieties and let 2 be a
homomorphism from A onto B. Then we have 2.2~ (Y)=v()Y, where Y
is any cycle on B.

PROOF. We may assume that Y is a subvariety of B. Let 4 be

the graph of 1. We set A4.(AXx Y)———rZXj, where each X; is a sub-
i=1
variety of AxB. Then we have X‘I(Y)=jprAXj and loi“l(Y)=ﬁ)prB
: =1 =1
[4+pr.X,;xB]=3)[X,: Y]YV. On the other hand »()Y=pryd-(Ax Y)]
i=1

:ZT[Xj: Y1Y. Therefore v(2) is equal to ET[Xj: Y]. Hence 2.27'(Y)
j=1 = ;

=yp(d). Y.

PROPOSITION 4. Let Y be a positive non-degenevate divisor and let X
be any divisor such that X=1Y (mod. ®,(A)) on an abelian variety A. Then
we have [(X)=>1.

Proor. Let {M,=0,M,,---, M,_,} be a complete set of representatives
of the residue group ®,(A4)/G,(A4). Since Y is positive non-degenerate,
aY+M; is linearly equivalent to a positive divisor for j=0,1,---,0—1,
whenever a is sufficiently large. Suppose now that ¢ is relatively
prime to p. Then {0,a°M,,---,a’M,_,} is also a complete set of repre-
sentatives of &,(4)/®,(A), because the order ¢ of the group &,(4)/S,(A4)
is a power of p. Therefore @®Y +a*M;=a*Y + M, (mod. &,(A)) for some
j7'. Whence we have proved that if ¢ is sufficiently large and is rela-
tively prime to p, then /((@d,)"(Y+M,)))=1 for j=0,1,---,06—1. Bince
(@6,) (Y +M,) is linearly equivalent to a divisor of the form (@Y +
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a’M,),, there is a divisor Z such that (@d,)"(Y+M,)~Z and Z,=Z for
all s satisfying as=0."

Let f-be a function on A such that (f)+Z>0 and let 2 be a
field over which A and f are defined and Z is rational; let x be a
generic point of A over k. We set 0(x)=23f(x+5s), where the summa-
tion is such that s runs over all points s satisfying @s=0. Then
obviously (0)+Z>0, and we set Z'=(0)+Z. Since Z/=Z' for all s
satisfying as=0, there exists a positive divisor ¥, such that Z'=
(@,)(Y,). By Lemma 1, (@d,)+(ad,) '(Y,)=aY, and (ad,)-(ad) (Y +M,)
=a™(Y +M,), where n=dim A. Therefore we have & (Y+M,)=a"Y,
(mod. &,(A4)) and hence Y+M;=Y, (mod. §,(A)). The suffix being
arbitrary, this completes the proof.

COROLLARY. Let X and Y be mnon-degemerate divisor on an abelian
variety A such that X=Y (mod. ®,(A4)). Then we have I(X)=IY).

- THEOREM 2. If X is a non-degenerate divisor on an abelian variety
A of dimension n, then we have laX)=IX)-a* for all positive integers a.

PROOF. When /X)>=1, our assertion follows immediately from
Prop. 3. Therefore we have only to prove that if /(X) is zero, then
HaX) is. also zero for all positive integers a.

Suppose now that [(eX)=>1 for convenient positive integer a.
Here we may assume that ¢ is relatively prime to p. Then also /(a’X)
>1. Similarly as in the proof of Prop. 4, we can show that /[(X)>=1.

Now we can restate Prop. 3 in a slightly better form as follows:

THEOREM 3. Let X be a non-degenerate divisor on an abelian variety
A of dimension n. If aX is congruent to a positive divisor modulo &,(A)
for suitable positive integer a, then we have I(X)=(X"™)/n!.

There arises now a following problem: Suppose that X is non-
degenerate and the z-fold intersection number (X®™) is not less than 1.
Then, is X))+ —X) equal to (X™)/n!? This problem seems to be plau-
sible, but the writer do not know the proof. When the dimension #=2,
- then this follows immediately from the theorem of Riemann-Roch.

THEOREM 4. Let A and B be isogenous abelian varieties and let 2 be
a homomordphism from A onmto B. If Y is any non-degenerate divisor on
B, then we have I(2"'(Y))=v(A) - UY).

PROOF. "~ When [(Y)=0, then [(27'(Y))=0. In fact, suppose that
[(A7Y(Y))=1. Then A274(Y) is linearly equivalent to a positive divisor
X on A. Therefore 1:27(Y)=A4X) (mod. &,(A4)). Since 1:27(Y)=v(A)Y
by Lemma 1, it follows from Th. 2 and Th. 3 that (Y)=>1.

Now suppose that /(Y)=>=1. Then we may assume that Y is posi-
tive. Let 2 be a field over which A, B and 1 are defined and Y is
rational ; let #,---,#, be n independent generic points of A over &,
where # is the dimension of A. We set i(#,)=v;, j=1,--,n. We can

3) Cf. Weil [8], p. 160.
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readily see that

AKX Ny (YY), =2, e h (Y, )
| =1 (YY)
hence . .
I07(Y)) =deg((A7(Y))y oo+ (7Y, ) !
| =v(d)deg(Y, Y, )/n!
=v()Y) .

COROLLARY. If X is a non-degenerate divisor on an abelian variety A
such that [(X)=1. Then we have &,=0.

PROOF. Since &, is invariant with respect to numerical equival-
ence, X may be assumed to be positive. Then, for all points # of Oy,
we have X,=X. By Chow [1] there exist a quotient abelian variety
A/®; and a separable homomorphism 2 from A onto A/®; whose kernel
coincides with &;. Then by Weil [8], Prop. 33, we can find a positive
non-degenerate divisor Y on A/®; such that X=21"(Y). By Th. 4 we
have 1={(X)==1(A"'(Y))=v()IY). This shows that &,=0.

§ 3. Some remarks on degenerate divisors

Let A be an abelian variety and let A be the dual abelian variety
of A (i.e. the Picard variety of A). Then, as is well known, A and
A are isogenous abelian varieties. Now let X be any divisor on A.
Then mapping the point # of A to the point # of A corresponding to
the linear class of X,—X, we can define a homomorphism ¢, from A
into A. We shall call ¢x the homomorphism attached to X. We can
readily see that the group ®, defined in § 2 coincides with the kernel
of ¢y. Thus the group ®, is an algebraic subgroup and there is an
abelian subvariety C such that &, is the union of a finite number of
subvarieties C,. We shall call C the abelian subvariety attached to X
When the dimension of the abelian subvariety attached to X is ¢, then
we shall call X i-degenerate. _

From now on, throughout this §, we assume that X is positive.
We can see that the set-theoretic intersection XN C is empty whenever
the intersection product X.C is defined and that, for each component
Y of X,Y,=Y holds for all ueC. (cf. Weil [9]).

According to Chow [1], we can construct a quotient abelian variety
A/C and a separable homomorphism 2 from A onto A/C whose kernel
is exactly C. Then similarly as in the proof of Weil [8], Prop. 33,
there is a positive divisor ¥ on A/C such that X=2"(Y). And it can
be shown that Y is non-degenerate; in fact if Y,,~Y, then X,=2""(Y}.)
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~2Y(Y)=X, and we can conclude that Y,,~Y for only finite number
of points iz of A/C.

Since Y is non-degenerate, the connected component {Y} containing
Y is an (irreducible) variety in the algebraic system of positive divi-
sors to which Y belongs'. (Note the fact that any maximal algebraic
family containing a non-degenerate divisor is complete.) On the other
hand we can readily see that the abelian subvariety attached to X
depends only on the class of X modulo ®,(4). Therefore it follows that
the connected component {X} containing X is an (irreducible) variety
in the algebraic system of positive divisors to which X belongs, and
the dimension of {X} is equal to that of {Y}. Thus each member of
{X} is of the form A7Y(Y’), Y’e{Y}, hence we have X'~X,, teA, where
X’ is any member of {X}. From this we have [(X')=/X) for any two
members X', X of {X}, and the dimension of {X} is dimA—i+/(X)—1.
Since the dimension of {Y} is dimA—7+{(Y)—1, we have [(X)=IY).
Now we can state the following _

THEOREM 5. Let X be a positive i-degenerate divisor on an abelian
variety A and C be the abelian subvariety attached to X of dimension i. If

the intersection product X, +---X, X, ,  isdefined, then the i-cycle X, »---
X, _, is of the form 2C, ueA, and the number of the components is equal
to n—9)-UX), and X, X, X .  is zero, where n=dim A.

COROLLARY. A and X being as in Th. 5, we have laX)=IX)a"""
Sfor all positive integers a.

§4. Virtual arithmetic genera of divisors

LEMMA 2. Let V be a non-singular projective variety of dimension n,
and let X and Y be any two divisors on V. Then the function r(mX+ Y)Y
of m is a polynomial in m of degree not grveater than wn for allintegers m.

PrROOF. When V is an algebraic curve, then y,(mX+Y)=deg(mX
+Y)=deg(X)m+deg(Y). Therefore, in this case, our assertion is trivial. .
We now proceed by the induction on the dimension .

Let %2 be a field over which V is defined and X, Y are rational.
Let C, be a generic hypersurface section of degree ¢ over k. Then it
is well known that if ¢ is sufficiently large, then the complete linear
system | X+ C,| is ample (cf. Matsusaka [2], Lemma 2). Now let E be
a generic member of | X+C,| over K, where K is a fleld containing
k over which the variety C,is defined. As is well known the modular
properties

2lm+ )X+ Y +2C) = 2ymX+ Y +C)+ 2(X+C)
—1s(mX+Y+C,) - E)

4) Xy(mX+Y) means the virtual arithmetic genus of mX+3Y on V.



8 M. NisHi NSR. 0.U., Vol. 9

(m+DX+Y+2C)=xy(m+ D)X+ Y+C)+2/(C)
—th(((m+ 1)X+ Y+ CL) ¢ Cb)

hold, where y(mX+Y+C,)+E), th(((”/l‘l'l)X'i‘ Y+C,)-C,) mean the vir-
tual arithmetic genera of divisors mX+Y+C)+E, (m+1D)X+-Y+C)-C,

on mnon-singular varieties E and C respectively. From these two
equalities we have

2r((m+1) X+ Y +C)—xy(mX+ Y +C) = x1(X+C,) — 25(Cy)
+26,(m+1)X+Y+C)+C)—2(mX+Y+C)-E)
and again applying the modular properties
lm+ DX+ Y) — 2ymX+ ¥) = 1(X) = 26X C)
+Ze,(((m+1) X + Y+C)-C) + 20, (((m+ 1) X+ Y)-C)
2o (MX+Y)+C)m xmX+ Y +C)-E) .

Now fix £. Then by induction assumptions, the last three terms of
the right hand side are polynomials in m of degrees not greater than
n—1, and the first two terms are constants. Whence the difference
2(m+DX+Y)—x(mX+Y) is a polynomial in m of degree not greater
than #—1. Then we can easily see that the function x,mX+Y) is a
polynomial in m of degree not greater than s The proof of our
Lemma is thereby completed.

In particular, When V' is a non-singular projective surface, we
have "

2 X+ V)= = (X6 X))+ () = (X, Vome+ (V).

Now we shall come back to abelian varieties. |

PROPOSITION 5. Let X be any divisor on an abelian variety A of
dimension n. Then we have x,(—X)=(—1)"z,(X).

PROOF, By the theorem of Riemann-Roch in Serre [7] and by Th.
1 in §1, we have

IX)—h(X)+P(X) =+ (= 1)"A(X) = — 24— X) .

Since the zero cycle is a canonical cycle on A, it follows from duality
theorem that A (—X)=~A""*(X), 1<s<n—1, and A(—X)=4X) (cf. Serre
[6]). Whence we have x,(—X)=(—1)"xX).

THEOREM 6. Let X be any divisor on an abelian variety A of dimen-
sion n. Then we have x(X)=(—1)"""«(X™)/n!.

PrROOF. Let C be a generic hyperplane section of A. By Zariski
[11], Th. 5, we have [mC)=—x,(—mC) for all sufficiently large m.
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Since yx,(—mC) is a polynomial in m for all integers m and ImC)=1IC)m",
we have —y,(—mC)=I[C) m" for all positive integers m; in particular,
setting m=1, we have —y,(—C)=/C). By Prop. 3 and Prop. 5 we can
conclude that y,(C)=(—1)"*Y(C™)/n!. o | ,

Now suppose that X is positive non-degenerate. Then the comni-
plete linear system [mX] is ample for all sufficiently large m. There-
fore, by the above arguments, we have y,(mX)=(—1)""(X™). m"/n' for
all sufficiently large m and hence for all integers m; in particular
2a(X) = (— 1)1« (X) L.

Finally let X be any divisor on A. Then the complete linear
system [ X+mC| is ample, if m is sufficiently large. Thérefore for such
m we have

2 X+mC) = (— 1)+« (X+mC)™) n!
= (=) (X! 4 glm)

where g(m) denotes a polynomial in s that has no costant term. Tki_us
the polynomial x,(X+mC) must coincides with (—1)"*(X™)/n!+ g(m).
We set m=0. Then we have the desired formula:

24(X) = (=)™ (X)) [nl .

COROLLARY 1. Let X be a positive divisor on an abelian variety A.
Then X is degenerate if and only if x(X)=0

COROLLARY 2. A, X being as in Th. 6, we have yx, mX)=y(X) -m"
for all integers m.

COROLLARY 3. If X is a positive non-degenerate divisor on an abelian
variety A of dimension n, then we have [(X)=(—1)""'x(X).

8§ 5. "Existeﬁée of I;ésic polar divisors on polarized abelian varieties

‘Let X,,---, X, be a'set of divisors on an abelian variety A. If

there exist integers «,,---, @, not all zero, such that 2@-){]—:—:0 (mod.
. =1

®,(4)), then they are said to be numerically dependent. The theorem
‘of Severi-Néron asserts that the residue group ®&(A4)/®,(A4) is a finitely
generated free abelian group (cf. Néron [5]). First we shall give a
proof without making use of this theorem.

PROPOSITION 6. Let-A and B are isogenous abelian varielies and let
2 be a homomorphism from A onto B. If Y,---, Y, are divisors on B which
are numerically independent, then 2°'(Y)),---, 2"'(Y,) are also numerically
independent on A. -

PROOF. Suppose that Za] “Y(Y,)=0 (mod. &,(4)). Then we have

Ea,z IY,y=0 (mod. @n(B)), and hence V(X)Za, ;=0 (mod. G,(B)).
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This shows that @,==---=¢q,=0. '

LEMMA 3. Let ® be a Z-module, Z being the ring of rational integers,
with the following properties: (1) O has no element of order finite; (ii)
There are v elements g,,-++, g, in & which are linearly independent over Z;
(iii) With the previous elements g,,---, g, if we denote by (g, &,) the
submodule of & generated by g,,--+, & then there exists a positive integer c
such that, for any element g of ®, cg belongs to the submodule (g5 &)
Then © is a finitely generated free Z-module.

PROOF. Let $ be a submodule such that %2 belongs to $ if and
only if ¢’42 belongs to the submodule (g,) for suitable integer ¢/3=0.
We shall show that © is generated by a single element. If £ is not
finitely generated, then we can find a strictly ascending infinite chain of
- submodules (g)cC(g,)C - C(g ) CH. We set g,=c.g,, Here we
may assume that each ¢, is positive. Then the set {¢,} is not bounded.
On the other hand cg,, belongs to (g, g,) and hence we can write
g n=ag ++ag, aeZ TYrom these we have (a,,—c)g,+ =0, and
by property (ii) a,c,=c. Since ¢ is a constant, this is a contradiction.
Whence we have proved that there is an element %Z of & such that
H=(). And we can readily see that the residue module &/(%) also
has the properties (i), (ii) and (iii).

Now we proceed by the induction on 7. The case =1 is already
settled by above arguments. Since &/(%) is finitely generated by the
induction assumption, & is also finitely generated.

PROPOSITION 7. The group S(A)/O,(A) is a finitely generated free
abelian group. :

PROOF. There exists an abelian variety B such that AxB is
isogenous to a Jacobian variety J. By Weil [8], we know that the group
&())/S,(]) is finitely generated free abelian group. Now let Z,.--, Z,
be a set of divisors on J which represent a base of &(J)/®,(/)); let 2
and g be two homomorphisms from A x B onto J and from.J onto AX B
such that uod=v(2)d,.5. Then for any divisor X on AxB we have

2 (X) =3 a,Z, (mod. B,(/)) and hence ep(X)=3aa(Z) (mod.

O, (AxB)). Since we have A top (X)) = (1) {(X) =¥ ()05 (X)=v(2)’X
(mod. §,(AxB)), and 1-(Z)),-+, A7"Y(Z,) are numerically independent on
AxB by Prop. 6, we can apply Lemma 3 to &(AxB)/8,(AxB). Thus
we know that G(AxXB)/G,(AxB) is a finitely generated free abelian
group.

Let Y,,---, Y, be a set of divisors on AXB which represent a base
of &(AxB)/S.(AxB). We set X;=Y;*(AXQ),j=1,---, p, where @ is a
point of B such that the intersection product Y;:-(AXxQ) is defined for
each 7. We can choose a maximal set of numerically independent
divisors Xfi""’X% among X,,---, X,. Now let X be any divisor on A.
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Then we can write )—(—xBEZbJYj (mod. &,(AxXB)). Hence we have
| =
XxQ=(XxB)-(AxQ)=315,X, (mod. ®,(AxQ)). Therefore there exists
. =

a constant positive integer ¢ such that C(X'XQ)E}T?,IJ/)Q], (mod. &,(A
. j=1

X @Q)). Again we can apply Lemma 3 to &(A4)/®,(4). This completes
the proof. -

Thus the group &(A)/®,.(A) is a free abelian group with o gener-
aters. This number p is called the Picard number of A. Prop. 6 asserts
that if A and. B are isogenous abelian varieties, then the Picard num-
ber of A-is equal to that of B. _

Let X, be a positive non-degenerate divisor on A; let €(X,) be
the set of positive divisors X such that mX=w'X, (mod. G, (A)) for
convenient positive integers m,m’. We shall say that the class (X))
determines a polarization on A. And each divisor of €(X,) is called a
polar divisor. If there exists a polar divisor Y such that for any
polar divisor X we have X=mY (mod. &,(4)) for suitable positive
integer m, then we shall call Y a basic polar divisor in the sense of
numerical equivalence. ' :

THEOREM 7. There exists a basic polar divisor in the semse of nu-
merical equivalence.

PROOF. -Let Z,-:-,Z, be a set of divisors which represent a base

of &(A)/®,(A4). Then we can write XOEi]aij (mod. &,(A4)). Let d be
=1
the greatest common divisor of a,---,ae,. We set g;=da/,j=1, p,
I’}
and Y'=31a/Z,. Since dY'= 3 a,Z,=X, (mod. G,(4)) and X,>0, we
i=1 j=1

have, by Prop. 4, I(dY’)=1. Then Th. 2 asserts that there is a posi-
tive divisor Y such that Y~Y". :

Now we can show that Y is a basic polar divisor in the sense
of numerical equivalence. Clearly Y belongs to the class €(X,), be-
cause dY =X, (mod. &,(A)). Let X be any polar divisor; then we can

p
write X= >)b,Z; (mod. &,(A)). There are two positive integers m,n’
j=1
such that mX=m'Y (mod. ©,(A)). Here we may assume that e, »/
0 0
are relatively prime to each other. Then since > mb,Z,= > m'a/Z;
7=1 j=1

(mod. &,(A)), we have mb;=m'a; for j=1,---. p. This shows that m is
a common divisor of @/,---, @/ and hence we have m=1.
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