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The notion of Banach limits of sequences of real numbers is the
generalization of that of the ordinary limits preserving the following
properties ; :

“the sum of two convergent sequences is convergent and its limit
is the sum of the limits of the two sequences”,

“the scalar multiple of a convergent sequence and a real number
is convergent and its limit is the scalar multiple of the limit of the
sequence and the real number ”, »

“the generalized limit of the bounded sequence lies between the
lower and the upper limit of the sequence ”.

In this note, we shall show that the notion of Banach limits can
be extended to the case where the sequences lie in some locally convex
topological vector spaces and shall give its application to the theory
of integrations of vector valued functions. '

A topological vector space is a vector space, over the real space, with
Hausdorff’s topology making vector summation and scalar multiplication
continuous. We shall say that the topological vector space with the
fundamental system of neighbourhoods consisting of convex sets is
locally comvex. A locally convex topological vector space is briefly
called a locally convex space. The dual space of a locally convex space
E, denoted by E’, means the space of all continuous linear functionals
on E. A subset B of E is bounded if, for every mneighbourhood U of
oel, there exists a positive number 2 such that 2BcU. The closed

convex cover of a set BcCE, CoB, is the smallest closed convex set
containing B; the polar of a bounded set BCE, B°, is the subset of
E’ such that :

P=lssup ()= 1, x'eEY)

If we choose as a fundamental system of mneighbourhoods the totality
of B° where B runs over all bounded sets of E, we call this topology
strong and its dual E’ strong dual. We shall denote by E’ the dual
space of the strong dual E’. A locally convex space E is said to be
semi-reflexive if E and E'' are isomorphic as a vector space. Hereafter,
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we shall denote by the symbol £ only the semi-reflexive locally convex
space and by the symbol E’ the strong dual of E.

A directed sequence in E, denoted by {x,}.c. Or {x,}, is a function
with its range in E defined on a certain directed set A the order of
which is denoted by <Cor>. A directed sequence is bounded if its
range is bounded in E. We see at once that the class & of all bounded
directed sequences in £ is a vector space as a functional space. Now,
for brevity, we shall use the symbols X, X, and x/(B) to denote the
range of a bounded directed sequence {x,}, the set of elements x, for
all a>p i.e. {x,; a>pB} and the image of BCFE by x'eE’ respectively.

Let us begin with the following:

LEMMA 1. The rvange of a bounded directed sequence {x,} has the
following properties a)~c) ; :

a) the intersection of all the sets C—b—Xé for all peA is not empty ;

Be4

b) for every x'eE' and PeA the image of CoX,; by x' coincides
with the closed convex cover of the image of Xz by x';

x'(Co X) =Co x'(Xp)

c) let B be an arbitrary element of A, them the intersection of the
inverse images of x'(CoXp) for all x'eE' coincides with the set Co Xy;

N {x; %' (x)ex!(Co Xp)} =Co X .

ANy 7

PROOF. The closed convex cover of a bounded set in E is also
bounded [3, p. 5]. It is therefore weakly bounded. A closed convex
‘set is also weakly closed [3, p. 67] and moreover a bounded closed
convex set in E is weakly compact [3, p. 88]. From these known facts
it follows that Co X is weakly compact and (TOXB is a weakly closed
set in CoX. The class, {CoX,; BeA}, of these sets has the finite

‘intersection property. Hence, we have /\ Co Xz==0. Since every Co X,

BEA
is also weakly compact and every x’eE’ is weakly continuous, the
relation b)

x'(Co X) = Co(x"(Xp))
holds. Now, we shall show

N {x; x'(x)ex'(B)} =B

FAE=¥ 74

for every closed convex set BC E. From the fact that the closed convex
set of a locally convex space is equal to the intersection of all closed
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half-spaces which contain the given set [2, p. 73], we obtain

B=N\{x;%'(x) ésgg x' ()}

x'€E v

=M {x; ian () =x'(x)= sup x' ()}

x'EE

=M {x; x’(x)e[igf z'(9), Sup x’(y)]} .

T CE! Y
In the real field we have
[inf x'(v), sup x'()]=Co x'(B)=x"(B) .
YEB . YEB :
Then we get
' B=\ {x; x'(x)ex'(B)}

x' €E
which proves Lemma 1.
Now, we shall prove the following Theorem 1 which gives the
definition of Banach limits in a space E.
THEOREM 1. To each bounded directed sequence {x,} in E we can
determine an element Lim x, in E, so that the following conditions (1.1) and

(1.2) may be satisfied ;

(1.1) Lim{aex,+by,} =a Lim x,+b Lim y, ,
(1.2) Lim x,eN Co{x, ; a>f} .
: : . @ - pEA

PROOF. Let {x,) be an arbitrary bounded directed sequence. For
every x’eE’, the sequence {x’(x,)} of real numbers is bounded. Since
Banach limit is defined for every bounded sequence of real numbers,
there exists a Banach limit Lim x'(x,). Since this Lim x'(x,) depends

on x' and {x,}, we shall write

Ix', {x,}) =Lim x'(x,). .

"Then, we shall show that l(x', {x,)) has the following properties;

(i) for every fixed x'eE’, [(x’, {x,}) is linear as a functional defined
on &, .

(i) for every fixed {x,)e®, I(x',{x,)) is linear and continuous as a
functional defined on E’,

and '

(iii) U, (£a))ellim &' (x,), lim &' (x,)] .

These properties are almost obvious and hence we shall prove only the
continuity of / as a linear functional defined on E’, that is, to each
positive number ¢>0, there exists a neighbourhood U’ such that x’eU’
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implies ‘ ,
[Ux!s (2 [ =e.

Since the range X of {x, is bounded, we put

U'vz(LX')o.

13

Thus this U’ is the required neighbourhood.

Therefore, for each {x,}, {(x’, {x,}), as a continuous linear functional
defined on F£’, is the element of E/. Now by the cgndition of semi-
reflexivity, there exists, for every fixed {x,)e®, an element x({x,}) in E
such that '

2" (x({x%) = Ux', {x,})

for all x’e£’. Let us define a Limx, for {x,}e% by
Lim x, =x({x,}) .

We shall show that Limux, satisfies the conditions (1.1) and (1.2). In

the first place, by the property (i) of / and the linearity of  x’eE’ we |
obtain the equation

x’(Lgm{axw+ by,}) =ax’(L£m x,)+bx'(Lim y,)
=x'(a le X,+b Limyw) .

Generally, in the locally convex space for a given x=o, there exists
a continuous linear functional x’ such that x/(x)==0 [2, p. 102]. .Then
we have

Lim{ax, +by,} =a Lim x,+bLimy,.
Next, we shall prove (1.2).. From the property (iii) of /, we can con-
clude that I(x’, {x,}) belongs to the closed interval [lim x’(x,), lim x'(x,)]
for each x’eE’ and {x,}e¥. In the real space, the closed interval
[lim x'(x,), lim x’(x,)] is expressed by /N Co{x'(x,); a> 8}, using the term
@ @ ps4

of the closed convex cover. Then by Lemma 1, b) we have

U {xm})eQAx’(C‘Z Xp) .

In other words, for every BeA and x’eE’, x'(Lim x,) is always contained
in x’(@Xp). Therefore, we have

Lim x,e {%; x’(x)ex’(a;XB)} .
[+ ' EFR ) .
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Then, by Lemma 1, ¢c) we have

| . L%tm xaeCEXé.

Since g is arbitrary, it follows

Lim x,eN Co X .

4

Thus we have proved the theorem.
We shall call Lim x, the Banach limit of {(x,}.

If a bounded directed sequence converges in the sense of Moore-
Smith, then the limit coincides with its Banach limit in our sense.
In other words, this Banach limit is a generalization of Moore-Smith’s.
And the concept of Banach limits in a semi-reflexive locally convex
space is an extension of Banach limits for the real space.

Now as an application of Banach limits, we shall show that there
exists a linear mapping from the space of the all bounded functions
with ranges in FE into the space of the all completely additive set
functions with ranges in E.

Let N denote o-algebra of subsets of a space S and m a com-
pletely additive positive measure on 0. The totality of finite di-
visions of S is a directed set with the following order < or >. The
order relation 4,<<4, means 4, is a subdivision of 4,. A function
defined on S is bounded if its range is bounded in E. The class of all
bounded functions defined on S with range in E is denoted by .
Then B is a vector space.

THEOREM 2. To each bounded function x defined on S with range in
E and to each set o in M, we can determine an element I(x, o) in E so
that the following conditions (2.1)~(2.3) may be fulfilled ;

(2.1) I(x, 0)em(0)Co x(0) ,

(2.2) for every fixed ceM, I(x,0) is a linear mapping from B into E,
(2.3) for every fixed xeB, I(x,0) is a completely additive set function
defined on . v

PrROOF. From Zermelo’s axiom of choice, we can take a function
of choice ¢ defined on M. For an arbitrary xe®B and A;S:alu---UanA

we shall define an element in £ as follows

J =3 mie)x(p(e)

We immediately obtain the following property (2.4) because ¢(a,) 1is
depends only on the set o,eM;

(2.4) For every fixed 4,] (x) is a linear mapping from B into E. {J,(x)}
i3 a directed sequence. Moreover, since xe® is bounded, {/,(x)} is also
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bounded. Then using Theorem 1 we can define the Banach limit for
{J 4x)}. Let x, denote the characteristic function of ¢. Then, for an
arbitrary xe®B and cedMM, we shall define the product of y, and x as
follows

2%(8) = 1,'8)%(s)
for every seS. 2,x€B is obvious. We put
I(x,0)=Lim J (x,%) .
4

Now we shall show that I(x,0) satisfies the properties (2.1)~(2.3). Let
4, be the division; S=oUc¢°. For every subdivision of 4,, we have
always

J (x,%)em(c)Co x(o) .
Using the property (1.2) of Banach limits, we obtain

1(x, o) =L‘ifmf4(x,,x)eo Co{J ,(x,%) ; 4> 4"}
c QACE{L(m) s 4> 4"y C m(0)Co x(0) -

hus (2.1) is proved. The proof of (2.2) is almost obvious from (2.4)
and (2.1). The proof of (2.3) is established by the usual method using
the boundedness of xe®B, the condition (2.1), the complete additivity of
the measure m and the finite additivity of I(x,0) for every fixed xe®B
which is easily obtained.

The correspondence [ in Theorem 2 gives not only the linear map-
ping from B into the family of completely additive set functions
defined on 9N with ranges in £, as mentioned before, but also com-
pletely additive set mapping from I into E’.
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