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1. Introduction. J.L. Doob has shown in his book [1] that a Poissoa
distribution of points over the real line is invariant under independent
displacements of the points when the displacements are governed by the
same probability law. This shows that when free Brownian particles
are distributed ‘‘at random’’ at a time ¢=¢, the same will be true for
t>t,, The object of this note is to clarify this situation for a system
of independent particles whose movements are governed by a probability
law satisfying fairly general conditions.

2. The theorem. Let F'(x) be the distribution function of a non-
negative random variable, F(—0)=0, F'(c0)=1,---2_y, %, &, L5+ be
points on the real line such that :--<x_ <z, <x,<---, 2,=0, and let
{#,—2,_; ©=0,1,2,---} be independent random variables with common
distribution function F(x). These points are said to be distributed at
random aceording to F(x). The equi-distant distribution of points z;—x;_,
=d, where d>0 is a constant, is included in this case with F(d+0)
—F(d—0)=1. Consider a system of particles which start from initial
random positions z, and change their positions independently each other
with temporally homogeneous independent displacements. The coordinate
Y,(¢) of the n-th particle at a time ¢ is then represented in the form

Y, )=x,+X,(), X, (0)=0, £=0.
In the following we confine ourselves to the discrete time parameter

t=0,1,2,---, the continuous case requiring no essential change of the
arguments. We shall prove the

Theoreme. Let {x,, n=0, =1, %2, ---} be the initial positions of
the particles P, distributed at random according to F(x) with finite
mean m:

0<m=rxdF(w)< o ,
1]

Suppose that P,, n=0, £1, =2,-.-, start from x, n=0, =1, +2..., and
move n such a way that the movements are independent each other, the
displacements X, (t)— X, (t—1), t=1,2,---, of P, are independent and obey
the same non-lattice probability law G(x), and {X,(t), n=0, =1,---} s
independent of {x,, n=0, +=1,---}.
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Then if we denote by N, ,(t) the numbe'r of particles lying in an interval
I=(a,d) at t, we have

limPr{N,(t):l‘c}—e‘“Z k=0,1,2,---, u=>b—a)/m.

Proof. Let us put

i e -

@.1) H(x)=1 if a<x<b,
, =0 otherwise. | 4
Then we can write : , (g
N = 3 HT,0).
We shall first prove that
2.2) E{N,(t)} <o for all ¢=0.
and ~ |
2.3)° lim B{N,(¢)} =p
For this purpose we introduce a non-negative smooth function H(x)
with its Fourier transform A(f) satisfying (ii), (iii) of §2, [2]. Suppose
first that F'(x) is a non-lattice distribution and write
o= evdF@),
Y(w)= f "~ 6"dG(@).
Thena since {xm T’L:O, il, e }’ {Xo(t>’ tZO} ’ {X'1<t)’ t—>—0}’ {X—-l(t>) tZO}:
are independent and _ : : ’
E{e“n} = B{exp [iu 3% (2,~2,-)]}
=) if n>0,
= p"(—u) if n<0, g

we have

ELH(Y,®)) :E{—;—S:ei“(“n*xn("%(u) du} |

T

ZLS o™ (W)W )R du if n=>0,

___.zi X :go”(—u)w‘(u)k(u)du if n<0.

Therefore if we write

Nir, (&)=33 " H(Y,.(8)

we have
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E{NH,P(t)}:%j {1+ p) _  pP(=®) poywiu)du

1 pgo(u) _ ——p;o(——-u)J
ey =2 2P haedn
—¢ Q(P: u)
E +£Sc g(:(u))h(u)\,b‘(u)du %n_s ck(u)xpt(u)du .,
w | =I(p, 1)+ Jp, )+ K(®) , |
W -where we put

a(u) = g:ccos wed F@), Qp, u)=|1—pp(u) >

‘The analysis used in §2, [2] is applicable to (2.8). First by (2.8)—
(2.18) there we have

lim I(p, t)="+* h(0)
p>1-0 m
.» and also
lim JGp, )="[" 1= puypsad,
p>1-0 o J-e Q( )
“where Q(u)=Q(1, u). Hence, if we remember that | (u)|<1 for u=:0,
‘we have ' |
lim lim J(p, t)=0, lim K(f)=0,
t>o0 p>»1-0 t>oo .
.and so |
(2.5) lim E(Nﬁ,p(t))—":E’(NH(t))< o,
p>1-0
’ 2.6) lim BN A(t)) = "<°) mf H)da .
P\ v Reduction of (2.5), (2.6) to those with the H(z) in (2.1), that is
? \ (2.2) and (2.3), can be done in the same manner as in [2]. We define

.continuous non-negative functions H,(x), Hj(x), H.(x), Hyx), Hyz), and
H¥(x) in such a way: Hyx) vanishes outside a finite interval,

o< Hyx)— H(x) for xelI=(a,bd),
™ (@)~ Bz <y ;

‘put
*(@)=(H,* K))(@) (» on the right means convolution);
for an interval JOI we let
' H,(z)=0 if z€J,
=H¥(x)— H(x) if zed,
Hy(a)=(H} @) — H@))— H(@) ;
let
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0< Hy(x)— H\(x) for xedJ,
[" @ —m@ydz<y;.
and put .
- \ Hi(x)=(H, * K,)(@) ;
Hyx) is the same as in [2]. The condition that Hy(z), H(x) etc. are

even functions is not essential to the argument of reduction and it
applies to the present case having

E{N,(t)} < o for all ¢=0;
and '

lim E{N,()} :%Sf H@)dz= p.

t>o0

This proves (2.2) and (2.3).

Now
Efexp [izN,(t) ]}
= F{exp [iz 3] NA(Y.(H)])
= I1 B{exp [iNA(Y,()]} = I {1+p,0)(e“~ D},
where

- p@O)=Pr{H(Y,(0)=1} =E{H(Y,())}.
If we note that for sufficiently large 4 there holds

Hi(@)>H@), —o<z<om,
we can easily obtain

@) PUOSE(H (YO =5 1@y du,
where hi(u), the Fourier transform of HF(x), vanishes outside a finite

interval. Therefore we get

(2.8) P.(t) >0, ast—> oo,
uniformly in n. So that

E{exp [N,(t)]} =exp [ 3] log {1+ pu(t)(e*~ 1D} ]

~exp [ 3] put)(e —1)+0o(1) 3 ()]

—~>exp [u(e®—1)], &>, 4
by (2.3) and (2.8). This proves the theorem for non-lattice F'(x).
When F(z) is a lattice distribution with maximum span d>0, then
() has 2xr/d but no other smaller number as a period. We can write
now, for the smooth function H(zx) introduced in the above

14
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E{NI,P(t)

_ lg: 1Q(P:‘(“> R(u) W) du— é;‘s BV du

o %%K;vgf@”g§§w@+%?)&;%d“

2{7 5 (e 2 (e 227 L0,

— o rawye

mJ—

=1(p, t>+J(P: 6+ K() -
We get as before

1 im o=l SH(E) (),

B im0 0=, S 0o 2o 27) S,

(2.12) lim K(£)=0.

t>o0

It should be noted that the summations in (2.9)-(2.11) are really ex-
- tended over a finite number of integers. Hence the right-hand members
of (2. 10) and (2.11) are finite and

E(Ng@®)<e  for all >0,

tim lim I(p, &) =9 lim lim J(p, £)=0,

t>oo pr1-0 m t>c0 p>1—0

so that
lim B(N(8)= "0)
m

The remaining part of the proof is the same as in the non-lattice case.
We thus have proved the theorem.

Remarks. (i) From the above arguments it is clear that X,(t)—
X (t—1), t=1,2,---, need not depend on the same distribution, but we
have only to require the relation

P(t, u)=E {5} >0, as t—>o.

(ii) Suppose H(x) be a Riemann-integrable function vanishing out-
side a finite interval. Then using the above results we can easily
deduce that

lim B (e=¥a®)

t>oo

(2.18) :eXp{S:( e _ l)dx} exp”:(em—ndn(u)},
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where
n(w)=meas. {z|H @) <u}.

(2.18) is the characteristic function of an infinitely divisible distribution..
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