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Among decision problems in the statistical theory, there are many
cases where the distribution space £ remains invariant under any trans-
formation belonging to a group G of transformations defined on the
sample space. For example, if (z;, 2., ..., ,) is the sample of a fixed
size from a normal distribution with unknown mean and unknown vari-
ance, then the normality of the distribution.of the sample remains in-
variant under any transformation (x,, z,, ..., 2, — (ax;+b, ax,+b, ...,
ax,+b). Of course, the parameters involved in the distribution function
vary within £ according as the transformation does. If an initial dis-
tribution is given in each type, the parameters can be considered as
induced from the initial distribution under transformations on the
sample space. Taking account of this fact, such a set of parameters
should be called a transformation parameter. The pair of the location
and scale parameters is an example of such parameters. ’ '

The group theoretic properties of transformations on the sample
space were often used as a key of solving some special problems (e.g.
Pitman [18, 197, Wolfowitz [23] and the author [13, 14]). In the general
problem of estimation of the transformation parameter, are these pro-
perties powerful tools ? : _

On the other hand, if the observations are our only source of in-
formation of the value of the transformation parameter, a satisfactory
solution of the problem should remain invariant under any transforma-
tion of the group (the principle of invariance). Hence it seems degirable
that the minimax solution of such a problem (if exists) is also invariant.
Does it hold true? _

The third question is: Can the invariant measure on 2 or a se-
quence of its truncated measures be used as a least favourable a priori
distribution, relative to which the minimax invariant decision function
is a Bayes solution? If the answer of this question is affirmative, the
classical Bayes’ method of solving the problem by using the uniform
distribution as an a priori distribution becomes to have a reasonable
foundation from the viewpoint of the subjective probability (see de
Finetti [7]). In this connection Karlin [12] has proved a theorem on
the theory of games that the invariant Haar measure on ‘a compact
group as a space of pure strategies is a minimax mixed strategy.
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The above three questions are answered, in this paper, in the af-
firmative under certain conditions.

A curious one of these condltlons is that the group G of transfor-
mations on £ induced by G is an A-group (for definition, see page 45).
But this condition seems to be unavoidable, since the special groups
under which Hunt and Stein have proved the existence of the most strin-
gent test are all A-groups (see Lehmann [16] and our Theorem 2.1)

The existence of the invariant measure on £ is guaranteed by
Mibu’s theorem, as an extension of Haar measure on a locally compact
group. Mibu [17] has developed his theory of the invariant measure on
a locally compact and os-compact uniform space admitting a group of

transformations, and introduced a topology of the group such that the
given space becomes a coset space. His theory gives us an important
tool of our discussions. Hereupon we need to define the topology of 2.
Fortunately the absolute variation V(P, P’) of the difference of two
distributions P and P’ of £ can be properly used as a metric of 2,
because V(P, P') becomes larger according as the diserimination of P
against P’ by testing procedure is more difficult (see Kudo [18, 15)).

In the problem of estimation of the transformation parameter, it is
not a considerable restriction to suppose that the decision space admits

a group G isomorphic or homomorphic to G, and that the loss function
W(P, a) remains invariant under any simultaneous and corresponding
transformation s € G of the distribution P and of the decision e, ¢. e.
WGP, sa)=W(P,a) for any oc¢G. For instance, when the decision
space coincides with £, V is one of such functions, and hence every
function on 2x £ only through ¥ can be also used as a loss function.
In this paper we restrict ourselves to consider the problem of estima-
tion of the transformation parameter under a loss function mentioned
above. However, for the generality of discussions, we speak of decision
functions instead of estimates. By doing so, our results stand more
close to Lehmann’s theorem [16, Th. 9.1].

; The concept of the invariant estimate was introduced by Fisher [8]
at an early stage in the development of statistical theory, and has proved
extremely fruitful. In 1938 Pitman [18] proposed a general method
of constructing the invariant estimate of the location and scale para-
meters (simulaneously and separately) by using the notion of the ¢fidu-
cial function”. (See example c¢). The rearrangement of Pitman’s
estimate from the standpoint of the theory of decision functions was
given by Girshick and Savage [9]. They have proved that Pitman’s
estimate is minimax with respect to the quadratic loss function (0—a)?,
where 6 is the parameter and o is the estimated value. In Blackwell-
Girshick’s 1954 Book [4], the existence of the minimax invariant es-
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timate of the location parameter is proved in the case of discrete
variables in Euclidean space under a certain general condition of the loss
function W(#—a) which is satisfied either by every bounded W (w) or by
~ every continuous W(u) having the infinite limits at u= = . (See Example
b). Discussions of the abstract transformation parameter problem have
been already developed in 1950 by Hunt, Stein and Lehmann (see Leh-
mann [16]), but they concerned only the problem of tesing hypotheses.®

In the first section of this paper, we refer to Mibu’s result without
any proof and give the consideration about invariant statistics, which
is inevitable in the following studies. Section 2 is the trunk of the
paper. We shall give there a straightforward extension (Theorem 2.2)
of Blackwell-Girshick’s result [4, Theorem 11.8.1], which answers the
above three questions. The problem of estimation of cosets, like that
of estimation of the mean from the observation of normal variables
with unknown variance and a problem of estimation by interval are
discussed in the last of the section (Theorems 2.6, 2.7). It happens often
that the sample space admitting a group G has an a prior: topological
structure. Section 8 is devoted to the proof of the homomorphism

between two topological groups G and G, when P is absolutely conti-
nuous with respect to the invariant measure on the sample space. The
results obtained in Section 8 prove their worth in Section 4, in which
some illustrative examples are gathered. The last example f) of Sec-
tion 4 is given as an open problem.

1. Group of transformations of the sample space.

1.1. Topology of the parameter group. Mibu’s Theorem.

Let (X, B, P) be a probability space,” and G be a group of 1:1
measurable transformations® e, o, 7, p, ... of X onto itself (¢ is the in-
variant transformation). Consider the probability measure P(¢~' B) on
the measurable space (X, 8B), and denote it by sP(B). For such mea-
sures oP, it holds that 5(zP)=(op)P, and we may write as spP instead
of (ep)P. Since

Gy={0: opP=pP for every p-G G}

is a normal subgroup of G, the factor group G=G/G, myay be considered
as a group of transformations of the space 2={GP:0¢G}. From this

(0) [24] reports that Peisakoff obtained some results concerning the invariant minimax
decision function. They are perhaps very closely related to our task. I regret that they
are unpublished. ' '

(1) We assume that every os-field of subsets of the spaces appearing in this paper
contains every single point set, and is generated by a countable number of subsets of the
space. :

(2) If Bes implies ¢-1B€®, then we call the transformation ¢ to be measurable.
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fact, we shall regard 5, 7, ... operating on elements of 2 as an element
of the group G. ,
For the subject of this paper, it is convenient to use our termi-
nologies as follows:
L2=the distribution space,
X=the sample space, '

G =the parameter group,
an element of 2=a distribution,
an element of X=a sample point,

an element of G=a transformation parameter.
As we have seen in our previous papers [18,15], the absolute
variation :
V(sP, ?P):s}}le% [EP(]B’)—FP(B)]——Ii;rElg3 [6P(B)—7P(B)]
of the difference of two probability measures sP and 7P can be used
as a ““measure’” of information of the experiment® (sP,7P). Hence it
seems natural for the statistical discussion to use V(GP,7P) as the
metric in 2®. Thus £ is regarded as a topological space with the met-
tric V in the following studies. ‘
~ Assumption A. The metric space 2 is locally compact and os-compact.”®
Hence 2 is separable and complete. :

Remark 1.1. Owing to A. Berger [1], the condition of the separa- -
bility of £ is equivalent to that £ is dominated by a o-finite measure ! :

aP(B):lgp(x :0)(dx), Be®B.

The general theory of the topology of a group of transformations
and of the invariant measure on a uniform space was developed by
Yoshimichi Mibu [17]. However we shall cite here his results in a
more restricted form. ‘

Theorem 1.1. (Mibu) Suppose that 2 is a metric space® satisfying

Assumption A, and that G is a group of isometric transformations of 2
onto itself, with respect to. which 2 s homogeneous.® Taking as a

neighbourhood of the neutral element & of G the subsets

(3) See Blackwell [3] and Kudd [15].

(4) We can see easily that V(oP, P) is a G-invariant metric: (1) WP, 7P)=0 with
the equality when and only when sP=7P, (2) V(¢P, tP)=V(cP, ¢P), (3) V(eP, tP)=V(sP,
D)+ VP, zP) and (4) V(azP, 55 P),=V(zP, 7P) for all 3€G.

(5) A topological space F'is said to be s-compact, if £ is the sum of a countable
number of compact subsets.

(6) It does not assumed in Theorems 1.1-1.4 that @ is a distribution space. These

theorems hold when @ is an arbitrary metric space with a G-invariant métric V.

(7) A space E'is said to be homogeneous with respect to a group G of transforma-
tions of F if, given any two points of the space, there is an element of the group which
transforms one into the other.
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UK, e)=1{c: V(spP, pP)<e for every pPec K},
‘where K 1s a compact subset of 2 and & i3 a real positive number, G
becomes o locally totally bounded topological group satisfying the first
-axiom of countability® and the mapping (pP, 3)—>o pP of 2x G onto 2
18 contrinuous.

A necessary and sufficient condition of G to be totally bounded is that
2 18 compact.

Assumption B.” If 6.,pP, a,pP, ... is a Cauchy sequence of points
€ Q for every 5 <G, then there exists a 5,( ¢ G) such that z,0P tends to

a,pP n the sense of the metric V as n—>co for every p e G.
Theorem 1.2. (Mibu). Suppose, in addition to the hypotheses of

‘Theorem 1.1, that G fulfills Assumption B. Then G is complete, locally
.compact and o-compact. The compactness of £ s a mecessary and suf-

ficient condition of the compactnesss of G. Since G is metrisable [5, Ch.
TX, 83], the separability of G follows from the o-compactness of G.

The subgroup ﬁ consisting of the transformations under which P
‘remains invariant is closed in the topological group G under Assumption
A. 1In fact, let5¢ H. Since e=V(EP, P)>0, the neighbourhood U({5P},
¢/2) 5 of & have no common element with H, that is, H is closed in G.

Thus we can treat the space G/H of the left cosets GH as a topo-
Togical space, in which the neighbourhoods of 5 have a form U(K, ¢)5H.

It is evident that the mapping «:sH —>sP of G/H onto £ is 1:1, and
moreover we have the following

Theorem 1.3. The mapping é s topological; in the other words, 2
s homeomorphic to G/H under the mapping a.

(8) Since tU{P}, ¢/8)P={pP:V(pP, TP)<e¢/8}, and since K is compact, there is a
finite number of elements 7, 75, ..., T, of G such that

Kc_g;U({P}, ¢/3)P.
‘Hence we have

NUGFPY, o/3)=NFUAPY, o/3)ei
n - 1 1
TAN _ /5LGU({P}, &)a Tz,

={p: V(ope; P, 7;5P)<e for g€U({P}, ¢/3), i=1,2, --- n}

<{p: V(gtP, 7P)<e for every PEK}

=U(K, e).

*This shows that {U({<P}, 7): w€G, r=a positive number} forms a complete sYstem of neigh-
‘bourhoods of the neutral element  in G.

(9) If G is commutative or if G is the group of all isometric transformations on £,
-then this Assumption is superfluous.
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Proof. It is evident that « is continuous, since the mapping s—oP
is continuous (the definition of the topology of @), and since the map-
ping 7 —cH is open.

That « is open follows from the fact that

a[UGP, eyaH]= (6P : V(7P, 3P)>¢}.

Corollary. If every transformation of G, except for the neutral
element, transforms P to the other point of Q, then £ is homeo-
morphic to G. » :

Theorem 1.4. (Mibu). Suppose that Q and G satisfy the hypotheses

of Theorem 1.2. There exists an ouler measure &% on 2, which satisfies
the following conditions:

i) EXGA)=E&%4), 5¢G, ACL.
ii) Ewery Borel set is measurable.“?
iii) For any subset A of 2, there exists a Borel set B suclz that
E*(A)=&(B).
(we shall write as € the outer measure &* of measurable set).

iv) If A ts compact, then §(A)< .

V) E¥@Q)< oo if and only if 2 is compact.

vi) & s a continuous measure; 1. e. there corresponds a meighbour-
hood U of & of G for every positive ¢ and every measurable subset A
(E(A)< =) of 2, such that

§[(cA-A)—(cA~A)]<e, €U,

vil) If u* is a left invariant Haar measure on G and f(pP) is o

&*¥-measurable function on 2, then f(s'pP) is a E*u*-measurable function
on 2xG@G.

- viil)' The outer measure satisfying the conditions i), ii) and iii) is
unique. ~ ,
ix) It is a necessary and sufficient condition for a measure =, defin-
ed on the class of the Borel subsets of 2, being absolutely continuous with

respect to & that there corresponds o neighbourhood U of ¢ of G for
every € >0 and every compact subset K of 2, such that

[absolute variation of (Evr—-w) on Kl<e,oeU,

where sm(A)=m(c"TA) for every Borel set ACSL.
x) For two measurable subsets A and B of positive &-measure, there

‘is an element T ¢ G such that &*FA~B)>0.

(10) Under Assumption A, the concept of Borel sets is equivalent to that of Baire
sets. See P.R. Halmos [10; p. 220].
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This measure £ is regarded as an invariant measure on G/H.
Since the closed subgroup H= {6:5P=P} of the locally compact
group G is also locally compact, there exists a left invariant Haar

measure » on H. For any Borel measurable function f(z) on G, the.
integral '

@.1) L_; . E(daH)Sﬁf(ar)u(dF)
is invariant under any trausformation ¢ —ps. In fact, writing
FHal)=| @ @),
H
we have |
(1.2) j_ e E)E(doH) = S~  PHGH) £ (doH).
G/H G/a

(1.2) shows the G-invariance of the integral (1.1). Therefore, by the
uniqueness of the left invariant Haar measure on G, we have

| r@uda)=|_ _sdsED| 1@ @),

that is, we may write without any confusion that
| r@n@=| s@p)|_rem) .

We shall denote by € the o-field of all Borel subsets of the para-
meter group G throughout the remainder of this paper.

1.2. Invariant statistics.

Every measurable mapping #(x) of the sample space (X, B) into
another measurable space (7', ¥) induces a decomposition of X into dis-
joint measurable sets X,= {x:t(x)=t}, te€T. (See footnote (1)). Writ-
ing

(@P)(E)=0cP(t ' (E)) for Ecg,

oP is resolved as
FP(BAt-Y(E))= j GP(B: )GEP)(dt)

for Be® and E ¢ T, where P(B:t) is a non-negative measurable func-
tion on T depending on Be¢® and on sP. In general, sP(B:{) is not
uniquely determined. However if we can choose oP(B:¢) such that
oP(B; t) coincides with sP(B~X,:t) for [,-almost all ¢eT and for all
cPeg, and if sP(B~X,:t) is a probability measure on (X,,3,), B;=
{B~X,:B¢e3B}, then we call {(x) a statistic and say that sP(B:%) is a
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conditional probability of B given that {(x)=¢. The set of all (cP), is
~denoted by £7.

If the ranges of two statistics t(x) and ¢'(z) are in a 1:1 corres-
pondence B as measurable spaces such that the set {x:B{t())>=t'(z)} is
of l-measure zero, then we say that ¢(x) is equivalent to ¢'(x).

Let g be a subgroup of G, and 7T be the class of the subsets gr=
(@' :a'=0x, ceg} of X. If the class T of the measurable subsets of 7"
can be defined such that the mapping ¢:x—>gr is a statistic, then a sta-
tistic, equivalent to #(x), is said to be g-invariant, or, t.e., t{(x) is g-
invariant if and only if

2’ =ox and o€ g imply t(z')=t(x) [-almost everywhere on X.

Hence we have, for a g-invariant statistic {(z),

(;EP)T:(EP)T, T€Qg and g € G,
and
76P (B:t)=6P(r7'B:t)  (sP)ralmost everywhere on 7'
for all reg. '
When t(z) is a statistic invariant under a normal subgroup g of G,

we can consider a group G? of transformations ‘¢, on 7T defined as
follows:

t(ogm):t(g&x)za,yt(x) -almost everywhere on X,
that is, if 6 € G then

ort(x)=t(ox) l-almost everywhere on X.
And we have

(1.8) (6P)r=06,Pr, 0€G ;

(1.4) EP(Bmt’l(E)):jEEP(B:t)ETPT(dt), se@,

when ,P+(E)=Py(c7'E) for every Ee¢<I. Hence it holds evidently that

(1.5) GP(B:t)=P(s~' R:oy~'t) opP,-almost everywhere on 7.
Denote

Gt ={o:00prPr=p,P, for every pe G},
and

Gl = {E:E;p‘TPT:ETPT for every pe G},
Since the mapping ¢—s of G onto G is an algebraic homomorphism with
a kernel Gy, and since G¢ is a normal subgroup of G, the factor group
GF=G/G? is algebraically isomorphic to G/GF. On the other hand, since
G” can be regarded as a group of transformations of Q7, the absolute

variation metric V, on 27 reduces G* to a topological group by Mibu’s
method stated in Theorem 1.1.
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Theorem 1.5. If both of £ and Q7 satisfy Assumptions A and B,
then the algebraic homomorphism ry 55, of G onto G* is open and con-
tinuous.

Proof. Let BT be a compact subset of 2%, and (T—l)TPT, (;5;, P,,...,
@ST P, be an ¢/38-net in F*. Choosing one point 7,P from each complete
inverse image of (v)»P, under the mapping 7P—>7,P, of £ onto 27,
t=1,2, ..., n, and denoting K= {7,P,7,P, ...,7,P}, every element &
‘belonging to U (K, ¢/3) satisfies

VilorroPr, 71Pr) |
=V (or72Pr, oc(r)rPr) + Vilor(r)oPr, (r)oPy)
+ Vol(r)rPr, 7o Py
=2V (72 Pr, (r)rPr)+ V(T P, 7.P)
2 1

<Ze+ e=¢
3 3

for every 7,P, ¢ F”. Hence 5, belongs to the neighbourhood U(F”, ¢) of

the neutral element &, of G*. Thus the continuity of v is shown. It
follows from Assumptions A and B that ¢ is an open mappmg (See
Pontrjagin [20, Theorem 13]).

By Theorem 1.5 the kernel GZ of the mapping v is closed, and the
natural topology of G/GY is equ1valent to the topology of G*"=G/GY,
induced by the metric V. :

Theorem 1.6 Under the same hypotheses as Theorem 1.5, G* is
isomorphic to G/GY under the mapping cGIY—>3G* as a topological group.

In the following we shall give two examples of invariant statistics,
each of which will play an important réle in the later discussions.

a) A G-invariant statistic 2(x). Let (Z, D) be a measurable space
of the range of z(x). Since Go=G for every s ¢ @, every point z of Z
remains invariant under any o,:

o22(x)=2(0x) =2(x)
for every o ¢ G and l-almost everywhere on X.

H)ence, from (1.8)—(1.5), we have

(1.6) asz—Pz,

LT GP(BArD)= LEP(B:z)PZ(dz), De®.

and

(1.8) oP(B:2)=P(c7'B:2) P-almost everywhere on Z.

From (1.6), £7 consists only of one point. P,.
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b) A Gy invariant statistic y(x). Denote by (Y, €) the measurable
space of the range of y(x), and let 2(y) be a G-invariant statistic on (Y,
€) onto a measurable space (Z, D). We have, similarly to (1.6)—(1.8),

o,P,=P, for every o€ @,

'&'YPY(CAz—l(D)):LEYPY(C:z)EZPZ(dz), CeG, De®,

and
oyPy(C:2)=Py(c7'C:2) for every o ¢ @G,
: Pz-almost everywhere on Z.
Moreover, z,(x)=z(y(x)) is also a G-invariant statistic on X, and we have

oP(B~y (C~z"(D)))
:SD P, (dz)SCEP(B: Y, 2)orPy(dy : 2),

where oP(B:y,2) is a conditional probability of B for given z,(x)=z and
y@)=y.

Especially, if = ¢ G, we have
(1.9) oP(+"'B:y, 2)=cP(B:y, 2) [y-almost everywhere on Y.

Let X be fixed for a moment, and write I,= {p:pr=2} and gz
={px:peg}. The correspondence Gopx —~pl,Gy of {Gypw:pe G} onto the
left coset space G/L(G, is 1:1. Since G, is a normal subgroup of each of
G and LG, and since I,= {p:pr=w} is the factor group of I,G, modulo
G, the correspondence pl, G0~—>p] of G/I,G, onto G/IL, is also 1:1. From
this fact we may consider that Y,= {y:2(y)==z} coincides with the topo-
logical space G/I, for some z ¢ X,= {x:z,(x)=2}.

Assumption C. There is a B-measurable subset X, of X such that

1) Ps-almost all X, cross with X, at only one point x.,

2) J,= {p:px,=w,} 18 closed and compact in G,

3) the o-field €, ={C~Y,:Ce@} contains every Borel subset of Y,
-which is considered as a o-compact and locally compact space GJJ,,

4) the exceptional set N,CY, where (1.9) does not hold is tndependent
of 5¢G and +¢@G,,

5) there is one and only one Gyinvariant measure of total measure
1 on every X,— {x:y(x)=y}.

From 4) and 5) of Assumption C, 3P (B:y, ?) is an invariant measure
on X,, and hence independent of 5. We may write this invariant
measure by n(B:y, ). Therefore we have

(1.10) sP(B~y {(C~27(D)))

:g Pz(dz)jcn (B:y, 2)ayPy(dy:2), DeD, Ceg,
» _
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and

n

(1.11) S f (oc)EP(dx):} Pz(dZ)S fuly, 2)ovPy (dy:2)
X z Y,
for B-measurable function f(x), where '
£, A= f@n(do:y, 2).
Theorem 1.7. Under Assumptions A, B and C, every Go-invariant

statistic y(x) is  sufficient for 2, and the mapping oP —>syPy of 2 onto

27 is isometric. And further G* is isomorphic algebraically to G under
the mapping oy —>o. ‘

Proof. From (1.10) and (1.11) follows the sufficiency of y(x).

Let {C*, C~} be a disjoint Hahn decomposition of Y with respect to
an additive set function (6yPy—7rPy). Since

3 PH(C ~2=(D))— 7y Pr(C~2 (D))
:jp{aypy(c:z)—;YPY(C:z)}PZ<dz), CeG, DeD,
iti holds for every C ¢ G that '

orPy(C*:2) =7y Py(C*:2) =6y Py(C:2) —7p Py(C: 2)
- Pj-almost everywhere on Z.
On the other hand, writing B*=y~(C"), '

oyPy(C*:2)—7yPy(C*:2)=6P(B*:2) —7P(B* :2)
: gg n(B:y, 2){6rPr(dy:2) —7yPy(dy:2)} =cP(B:2)—7P(B:?2)
C+
for every Be®B and for P,almost all z¢ Z. Therefore
EP(B+)—?P(B+):SZ{EP(B+ : 2)—7P(B*:2)) P,(de)
gj (P(B:2)—7P(B:2)) P,(d2)=3P (B)—7P(B)
P _
for every B e B.
Similarly we have also, by writing B-=y~*(C"),
5P(B~)—7P(B")<5P(B)—7P(B) for every Be B,

This shows that {B*, B~} is a Hahn decomposition of X with re-
spect to (6P—7P). Hence we have

V(@P, 7P)=Vy(cyPy, 7+Py¥).
Since G is a group of transformations on X, we have
NI,={e}, I,={p: Pm:‘x}:
zEX
and hence
mImG(): Go-

zeX
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This shows that each o outside of G, is a transformation of a coset
space G/I,G, for some z, and that G” is isomorphic to G=G/G,.

Assumption D. There are a G-invariant statistic and o Ge-tnvariant
statestic.

By Theorem 1.7 it is sufficient for statistical problems to treat
only a Ginvariant statistic instead of the sample itself. Hence, in the
remainder of this section and in Section 2, we assume without any loss

of generality that G is isomorphic to G as a topological group, and that
sample space X is the union of the topological space X, each of which
is homogeneous with respect to some factor group of G. Hence we shall

use, without any confusion, the same notation for elements of G, G and
G”*. :
By 2) of Assumption C, there is a unique Haar measure Q(L:z2) of
total measure 1 on J,. Let Le¥. It is proved similarly as Theorem
F of [10, page 281] that Q(+~'L~J,:2) is Borel measurable in X, as a
function of x=rx,. Write

J”P(L:z):jx Q=1L )P ()2 2).

The probability measure sP(L:z) thus defined on (G, £) satisfies obvious-
ly that

oP(L;2)=P(s ' L:2).
We call P(L:2) the ﬁducial measure for z. Denoting
fAr)=F(z.)
for a measurable function f(x), we have
(1.12) L F(@)oP(dw) = j ZPZ(dz)jGﬂ(aT)ﬁ(d-r 2.
In fact, | ‘ |
Fao)={ Flp)Qpi0=| fapm)Qdp)~J.i2)

=| Fm)Qdp)~.:2)

=| PR ~I.:9),
and

jxf (@)oP(da) = LPZ(dz) L{ (@)oP(ds:2)

— SZPZ(dz) } J w)oP(d(rz.):2)
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= SZPZ(dz)SX;r.P(d(-rxz) : z)Lﬂ(p)Q(v‘ (dp)~d.:2).

Hence by Robins’ theorem [21, Th. 2]

— SZPZ(dz)L}' (p)aP(dp: z)'
— | Po(d2)|_Flop)P(dp:2).

2. Minimax invariant decision functions.

2.1 Simple deciston problems admitting o group of transformations.

In Wald’s theory [22] of statistical decision functions, the decision
problem of fixed sample size is determined by the sample space X, the
distribution space 2, the decision space A, the space ® of decision
- functions and the loss function W(P, a): P €2 and ac A. In this sec-
tion, we assume that

a) There is a group G of transformatlons on the sample space X,
under each transformation o of which a fixed probability measure P on
X is mapped into cP(B)=P(s'B).

b) The distribution space £ is the set of all 1mages oP of a ﬁxed

P under transformations o¢ G. Hence G is the parameter group as
defined in 1.1. The metric space £ with V as a metric satisfies As-

sumptions A and B. From Theorem 1.1 G becomes a topological group.

Denote by A and £ the classes of all Borel subsets of 2 and G re-
spectively. ’

¢) (A, is a measurable space, and G is a group of 1:1 U-measur-
able transformations s on A, and G is homomorphic to G under the
mapping s — .

d) W(esP, pa)= W(aP a) holds for every p, 0 G and for every
acA. W(P,a) is a non-negative and 4 x2-measurable function on
2%xXA. Write

w(a)= W (P, a), acA.

e) @ is the class of the probability measures ¢(A4:x) on (A, %) de-
pending on z, such that (GA:ex) is an ¥ x B-measurable function on
G xX for any fixed AeA. @ e ® is called a decision function.

f) Assumptions C and D are fulfiled by X and G.

A decision problem (X, 2, A, W, ®) satisfying the conditions a)—f)
will be called a simple decision problem admitting the group G.

A decision function @(4:x) (€ @) satisfying the condition

P(eA:ox)=p(A:x)

is said to be #nvariant. The probability measure
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D(A:p,5P)= Lga (A:0)5P(dx)= jxgo(A o) P(d)

on (A, ) is called a distribution of decision under ¢ when &P is true.
If ¢ is invariant, then

D(A:p,5pP)=D(G"'A: 9, pP).
If g is a subgroup of G, and if ¢(A:z) is a function of « only through
a g-invariant statistics for any fixed 4, then D(A: e, 5P) may be regarded

as a function of the right coset space G/g for any fixed A ¢ ¥ and .

The risk funetion r(cP, ) is one of the essential concepts in Wald’s
theory. It is defined as '

@.1) rGP, p)= LEP(dm)SA WGP, a)p(da: ).

By applying the definition of 5P and the condition d) to the infegral
(2.1) and then transforming a—>sa and x—sx, we have

rGP, #) =SXP (dm)SAw(a)qp(frda : o).
From (1.12),

@2  1GP, go):S%Pz(dz)d(GF(dT:z) Lw(a)%@da:amyz),

yz:y(xz) )
where z(x) is a G-invariant statistic, and

;on(A;y):jX P(A:o)n(da: v, 2).

By applying Robins’ theorem [21, Th. 2] and Fubini’s theorem, it fol-
lows from the condition e) that (P, ) is a ¢-measurable function on
G for any fixed @ € . Hence rGP, ) is also A-measurable on £ since
the mapping 5—>P is open and continuous.

For the completeness, we shall give some definitions in the theory
of decision functions.

i) A probability measure = on (2, A) is called an a priori distribu-
tion, and the integral of the risk function

(e, @)= 1GP, )m(dzP)
Q
is called an average risk with respect to the a priori distribution =.
il) If a decision function ¢, € @ is such that
r*(mr, pr) <r*(m, ) for any o€ @,

then ¢, is called a Bayes solution relative to «~. If, in general, =, m,,. ..

‘is a sequence of a priori distributions, and ¢, is a decision function ¢ @
such that : ‘
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lim {'r*(ﬂ'm 900) _inf 9"*('77'1@’ ‘;0)} =0.

then @, is called a Bayes solution in the wide sense relative to the
sequence 7y, my, - ..

ili) A decision function ¢,¢ @ is said to be minimax, if
sup 7P, p)=sup r(GP, p,)
oPEQ cPEQ
holds for every @ ¢ @.
iv) An a priori distribution =, is said to be least favourable, if

inf 7¥(rm,, p)=inf r*(m, 9)
(] ¢ED

holds for every a priori distribution .
v) A decision function ¢ € @ is said to be non-randomized, if there
exists a measurable mapping a(@) of (X, B) into (A, A) such that

_ 1, if Asa(x),
A: — { ’ ’
P(4:2) 0, otherwise.

vi) A decision function ¢, is admissible, if there is no ¢ ¢ @ such
that

r(cP, ¢o)=r(P, ¢) for all GPe 2,
~and

r(cP, ) >r(P, ) for some P ¢ Q.

2.2. A-groups.

In this paragraph we shall give for the purpose of the later dlscus—
sions a definition of A-groups, and some examples of them.

Denote by u" the right invariant Haar measure of G. We shall say
that a locally compact and s-compact group G is an A-group, if corre-
sponding to any compact set JCG and to a positive € there is a compact.
set KCG such that

2.3) W(K)>0 and 1—;"‘&%)7)

Theorem 2.1. FEach of the following group is an A-group:

1) The additive group of the integrals.

2) The additive group of the real numbers.

3) A compact group.

4) The direct product group of a finite number of A-groups

5) A locally compact, connected and commutative group.

6) The product G,-G, of a closed normal subgroup G, and a closed
subgroup G, (not mecessarily normal) such that G,~G,= {e}, and that both.
of G, and G, are A-groups.
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Proof. 1)-4) is evident. v .

5) follows from Theorem 41 of [20] and 2)-4).

For 6), it is sufficient to prove that (2.3) holds for the product set
J=J,-J, of two compact sets J, G, and J,CG,. Since G, is an A-group,
we can choose a compact set F,CG, such that

(1_' 5)N2<F2' J2_1)< Fz(Fz):
where u, is the right invariant Haar measure on G,. Write
I= |J aJio'.

UEF2J§1
This set I, being the image of the compact subset J, x (Fy-J:%) of G,x G,
by the continuous mapping (s, T)—>ors™!, is also compact in the A-group
G&,. Hence there is a compact subset F, of G,, such that

(A —e)yp(Fy- I < py(FY),
where yu, is the right invariant Haar measure on G,. By writing
F=F.F,
‘we have
pr T )= (Fy - By I3 )
={ o wFro T do)
ST D py(Fy- I3 )

<= &) u(F)us(FY)
=1 —&)7w'(F),

since it holds for every o ¢ F,-J;* that
Fl'Fz'Jg_l'J;la—thlzﬂ‘a'Jfl'0'—1.‘
In general, the question whether evefy o-compact and locally com-
pact group is an A-group remains open.
2.3 An extenston of Blackwell-Girshick’s theorem.

Similarly to the last part of the preceding section, we shall assume

without any loss of generality that G=G=G". (see page 42).
Fix a non-descending sequence J,.J,, ... of compact subsets of G,
tending to G, and write

b,(a, z):&_ w(ﬁa)ﬁ(dp:z), n=1,2, ...,
and
b(a, z):Lw(pa)ﬁdp:z),

-‘where ﬁ(L:z) is the fiducial measure for z.
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- Theorem 2.2. Suppose that (X, 2, A, W, @) is a simple deciston prob- |
lem admitting an A-group G. It holds for every decision function ¢ @
that

sup 7(oP, p)=F*,

if there is an tnteger n for any positive € and for any z ¢ Z— N (PZ(N )=0)
such that

(2.4) b,(a, z)>F(z)—a Sor every ac A,

where
F(z)=inf b(a, 2) and F*:S F()P,(dz).
acA z

Proof. We assume without any loss of generality Vthat
sup r(cP, p)<co. |
oPrPeEQ
It follows from (2.2) and Fubini’s theorem that
@.5) R(K, )= | r(oP, p)u'(do)
— j ,u"(da)s Pz(dz)g F(dp:@j w@)p(3da: opt,)
K zZ G A

:S Pz(dz)j P(dp: z)j r(da)j (@)l opz)

for every compact set KCG. By applylng the transformation a — pa,
we have

(2.6) jA w(a)p (Gda: opw) = SA’w(f)a)¢(8[3da:o*pxz).
Again by transforming o —>ap !,
@7 j P @A’ op) ,f(da)_—_j P(GA’: 02 (do)

} X Kp

for every A’ ¢ ¥U. From (2.5), (2.6) and (2.7), and by using Robins’ theo-
rem [21, Th. 2], we have ,

(2.8) E(K, p)= LPz(dz)LF(dp: Z>SK.9“T(OZG)SA w(pa)p(Gda: o) .

On the other hand, by Fubini’s theorem and by the fact {(p, o):
peG, o Kpt={(p,0):pec K 0,0¢G},

[ Plp:a)|_flo, putde)=| wda)] _, fio, pPldp:2)

holds Pz-almost everywhere on Z for every & x¥-measurable function
S(o, p). Since
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SA w(pa)p(sda:x,)

is Bxﬁ-measurable, (2.8) becomes

LPZ (dz>ja ,ur(da)jl{_l.c_p(dp : z)SAw(ﬁa)¢(8 da:o.) .

Therefore from Fubini’s theorem follows
2.9) R, gD):S Pz(dz)j ;ﬂ(da-)j ga(ada:axz)j  w(pa)P(dp:2) .
zZ G A K e

Now let ¢ be any arbitrary positive number, D, a D-measurable set
of all ze Z for which (2.4) holds, and K, a compact set satisfying (2.3)
for J=J,. Writing '

(2.10) ’ K=K, -J;,
K% is compact and K} '.6sJ, holds for every o ¢ K,,. Hence (2.9) yields

2.11) RK?, )= Pz(dzﬂk_n #(do) | bu(a, Dp(ada:on)

>, Pz(dz)SKn ur(da)SA[F(z) —elp(odaz o)
=i (K| | [F@)=e1Pa(dz)

>Q—e (KD [ Fe)—e1Padd).

Evidently {D,} is a non-descending sequence and tends to Z—N,
since {J,} is non-descending. Hence

limSD F@)P(dz) = SZF(z)Pz(dz) — P,

>c0

That is to say, theré,is an integer n, such that
(2.12) L) F(z)Pz(dz)<F*—e ;for'every n>n,.

Hence we have, from (2.11) and (2.12),

R(K%, )
WKL

(2.18) Sup r(oP, p)= >(1—e)(F*—2e),
o P> }

where 7 is a larger integer than n,.
Since ¢ is arbitrary, (2.18) shows that
sup r(eP, p)=F*.
cPEQ

Thus the proof is complete.
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This theorem is a straightforward extension of Blackwell-Girshick’s
result, and the proof developed above has been proceeded exactly along
the way of theirs.

Corollary. Under the hypotheses of Theorem 2.2, the invariant
decision function ¢° is minimax, if and only if

(2.14) - 9°(4.:3.)=1 Palmost everywhere on Z,

provided that A.={a:b(a,?)=F(2)} is not empty.
Proof. For ¢° satisfying (2.14) it follows from (2.2) and Fubini’s
theorem that

2.15) roP, )= P, P(dr: z)j w(@)p*Gda: or.)

[, Paaa| P

Szpzuz)jg (dr: z)j w(Fa)p'(da: 2.)
§
L.

b(a, 2)p’(da:x,)

A

Sz P(dz)

SZPZ(dz) b(a, 2)9°(da:z,)

Lpz(dz)j F(2)p'(da:z.)

:S F(2)P.(d2)= F™*.

Hence ¢° is minimax by Theorem 2.2.

Denoting by K, a compact subset of G, satisfying (2 3) for J=J,,
we have, similarly to (2.11), S

R(KyJ 0p) - (K
p(Kad 7)) T WK

SZPZ’(dz) j b,(a, p(daia)

>(1— a)[m + LPZ(dz)L {bn(a, 25— F(z)} P(da:a,) |
for every invariant decision function ¢. If ¢ is minimax, then

K R(K Jvz Y g go)
Fr=sup rlePy ) == ik gy

Hence for a minimax and invariant ¢ we have

| Paan)| thata, )~ F @)} p(da:a),

, , (n=1,2, ... ad. inf.)
Since lim b,(a, 2)=b(a, 2)=F(z), it follows that |
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LPZ(dz) j _{b(a, )~ F()} p(da: 2)=0,
- and
SA{b(a, 2)— F(2)}p(da:x,)=0 P,-almost everywhere on Z.

Hence we have
' p(4,, z,)=1 Pzalmost everywhere on Z.

This Collolary shows that the minimax invariant decision function
can be constructed if and only if b(a,2) attains its minimal value for
P,-almost every z¢ Z. In general, a minimax decision function is not
necessarily invariant. We shall speak of a minimax invariant decision
function defined above as a Pz’tmom-Gférshz'ck-Savage-Blackwell’s decision
Sunction (for shorten, PGSB d.f.).

The following theorem is also similar to Blackwell GlI‘Sthk’S remark
(4, p. 311].

Theorem 2.3. The hypothesis (2.4) of Theorem 2.2 holds in each of
the following cases:

1) w(a) s bounded.

(2) The decision space A s a topological space which has a sequence
(C,} of compact subsets such that

U C,=A and lim inf w(a)=co

Nl nrco GOy

and moreover w(a) s a continuous function of ac A.
The proof is quite similar to that of Blackwell-Girshick.

2.4. Miscellaneous properties of PGSB d.f.
Theorem 2.4. If F*< o, then a PGSB d.f. ¢° is a Bayes solution
wn the wide sense relative to a sequence {€,}:

£, (E)-—"f—(£{(LK;§‘—E) - for every A-measurable ECQ, where Lzp=

{o:cP e E} and K s a compact subset of G defined by (2.3), (2.4) and
(2.10) for J=J, and e=¢, 0.
Proof. From (2.13) and (2.15) follows that,

ngr(aP, P doP)~ SQT(UP, PO (doP)

_ 1 NN oy,
= |2 7ePs pud) | ur(aP, ohypr(do)]
>(1—¢e,)(F*—2e,)—F*= —¢ (F*+2—2¢,)

hold for every ¢ ¢ @. Hence we have

lim {mfj r(oP, P)en(doP)— j (P, ;00)‘5,,@0}7)}:0.

73300
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Corollary. If © is compact, a PGSB d.f. ¢° is a Bayes solution
relative to a normalized invariant dlstrlbutlon ¢ on £, which is least
favourable.

Proof. @G is compact, since £ is so. Hence, letting K,=G, (2.18)
‘yields

| 7P, 9)2deP)2F*={ r(-P, 9*)2(doP)

for every ¢ ¢ @, because G is unimodular and
w({oc:0P e B})=§H).

Moreover we have
inf S (0P, )m(dsP) éf 1(oP, g")rr(doP)
PED JQ Q
_ F¥—inf j 7(oP, p)E(daP).
eED JQ

for any a priori distribution =, since r(¢P, »°) has a constant value F™
for every oP ¢ Q.

The admissibility of the PGSB d.f. ¢° remains unsolved in the general
case. Blackwell [2] has proved this in a special case. We have the
other result, stated below, than Blackwell’s. ,

Theorem 2.5. If G s compact and tf W(eP, a) is continuous on £
uniformly in a € A and bounded on 2 x A, then the PGSB d.f. is admis-
stble.

Proof. Since

IT(UP: qo)-fT(TP: §0> l
< | LGP (dx)L W (P, a)p(da: 5)— SQTP (olx)L W (oP, a)p(da: )
+ jATP(dx)L i W (P, a)— W (P, a) 1 o (da: o),
‘we have the continuity of the function r(cP, ») on 2. Hence if r(¢P, ")
>7’(0'P, @) for all ¢P and if r(cP, ¢°)>r(aP, ¢) for some <P, then
Fr=y F(E ¢0)>7.1<(5’ gO);

‘because every open subset of £ is of £-measure positive. This confra—
dicts with the fact that ¢° is a Bayes solution relative to §. (¢f. Blyth
[6, p. 28])

2.5. Some related problems.

a) Coset estimates. Let g be a closed subgroup of G. Suppose that

A is a right coset space modulo g, and that the group G of transforma-
tions of A consists of the transformations p:go—gop. We have then
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' nga, )= Lw (gop)P(dp:2).

If w(go) satisfies the condition (1) or (2) of Theorem 2.8, and if &, mini-
mizes b(gs, ), then the decision function ¢°: '

(2.16) @*(go.p: pr)=9"go.:x.)=1

is a PGSB d.f. Under this decision function ¢° the distribution of deci-
sion when P is true is :

D(A:g%, P)= | Pu(dd)|_o"(A:pz)Pldp:2)

_ sz Pz(dz)jagoo(ﬁ‘lA :2) P(dp:2)

I

Lﬁ({ p:A 3 go.p} :2)Pz(dz),

where A is a Borel set of the right coset space G/g. Hence we have

Theorem 2.6. If the decision space A is a right coset space G/g,
then the distribution of decision under a mnon-randomized PGSB d.f.
gwen as (2.16) when oP ts true s independent of the parameters belong-
tng to () o;'go,z t.e.,

2&Z . .
D(A: ¢ orP)=D(A: ¢°, vP)
for every o€ (\o3'gs,.
2EZ . . .
b) The loss function for problems of estimation by intervals.

Suppose that the fiducial measure P for each z is absolutely continuous
with respect to the left invariant Haar measure g on G, and write

PL:2)= jj(a:zm(da).‘

Let the decision space A be the class of the subsets a of G transformed
from the sets of the form {s7':p(c;2)=u} by elements reG. Put, for
acA,

0 if eca,

Cla)= {1 - if e¢a.

Theorem 2.7. If
w(a)=aC(a)+Lu@™), a, >0,

then the invariant decision function @:
p(a,:z)=1, az:{a‘lzg(a:z)gé},
) 44

48 a PGSB d.f.
Proof. b(a, 2)=aP(G—a~:2)+8u(a~")= a+5 (B—aD(o:2)} n(do),
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bu(a, 2)=aP(J,—a ':2)+B8u(@ ) P(J,:2)=aP (J.:2)+ 8@ — J)P (J,:2) +
S_I s {BP(Ju:2)—ap(s:2)} w(ds). Denote a,,,z:{a“:ﬁ(a:z);ﬁgf(Jn:z)}m

J,;. Then obviously a, and a,. minimize b(a, z) and b,(a, 2) respec-
tively. From C/J>p[{a:E(O‘ZZ)>—/§)—'?(J“:Z)}:!z,u(a;‘), lim P(J,:2)=1 and
) &

U@a...=a,, it follows that there is for every ¢>0 an integer =, such

n=1

that w(a;’)P(J,:2)>p(a;')—e and P(J,—a;.:2)>P(G—a>':2)—e¢ hold for
n>n, This shows that (2.4) holds and by Theorem 2.2 the PGSB d.f.
exists. Hence by Corollary of Theorem 2.2 the proof is accomplished.

3. The relation between topologies of the sample space and of the
distribution space.

3.1. Homogeneous spaces with respect to a group.

Suppose that i) the sample  space X is a s-compact, connected and
locally compact metric space, where the metric in X is denoted by
((z, ¥));

ii) B is the class of all Borel sets of X;

iii) G is a group of isometric transformations of X onto itself;

iv) X is homogeneous with respect to G;

v) if o2, 0%, ... is a Cauchy sequence of sample points for every
x ¢ X, then there exists an element o¢,¢ G such that

lim ¢, x=0,2x for every z e X,

As seen in Theorems 1.1 and 1.3, G becomes a s-compact and locally
eompact topological group with the base of neighbourhoods (%, ¢) = {o:
(o, x))<e for every x ¢k} of the neutral element e, where & is a com-
pact subset of X, and there is one and only one G-invariant measure m
on (X, ®B).

Further we suppose that

vi) the probability measure P(B) is absolutely continuous with
respect to the G-invariant measure m stated above, and

P(B):Lp(x)m(dm), Be®.

From vi) every oP (0cG) is also absolutely continuous with respect to
m and we have

GP(B)= Lp(a‘lx)m(dx), Be3.

Lemma 3.1. V(o7 P, TP) is a continuous function of o for every fized
7eG. _
Proof. Choose a compact subset © of X such that
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FP(X—k)<e/3

for a given positive number ¢. Such a set exists, for X is o-compact
and 7P is finite measure. Let v(x,, 26) be a neighbourhood of xz, with:
radius 28, whose closure is compact. Since every transformation in G
is isometric, the closure of every open set v(x, 28) is compact (from the
condition iv)). Denote by z, z,, ..., «, a finite 5-net covering %k, and write
=iz, %, ...,2,} and ‘

J’=the closure of f_)jv(xj, 26).
Then we have , J
| ull', k",
because there is, for any x ¢k and any p € u(¥, 8), an z; ¢ &’ such that

((pz, ©;)) = ((pz, px))) + (o5, T))
=((@, ©;)) + ((px;, x;)) <5+ 6=28.

From this fact, it holds for every p e w(k’, §) that
(8.1) prP(X—k")=7P(X—p~'k")
- <7P(X—-k)<e/3.

As seen in ix) of Theorem 1.4, we can choose a compact subset &*
of X and a positive number 8§, such that
(3.2) } [absolute variation of (s7P—7P) on k”]<¢/3.
for every o< u(k*, 8,). Therefore it follows from (8.1) and (8.2) that

V(erP, 7P) :

= [absolute variation of (o7 —~7P) on k"]+arP(X—Fk")++P(X—k")

e, 2

<§+—é E—=¢,
for every o e u(k*, 8,)~u(k’,§). This completes the proof.

From Lemma 8.1. directly follows

Lemma 3.2. The mapping ¢—cP of G onto £ s continuous. Hence
2 18 a o-compact metric. space.

Hence we have, by using the remark in the footnote 8),

Lemma 3.3. There corresponds for every compact subset K of 2 and
every real € >0 a neighbourhood u of e of G such that

U={c:0¢€u}
CU(K;e)=1{o; V(cpP, pP)<c for every pPc K}.
Remark 3.1. If we have known that £ is locally compact, then the
class of all U(K, ¢)’s forms a complete system of neighbourhoods of ¢,

as seen in Theorem 1.1. In this case Lemma 8.3 asserts the continuity
of the abgebraic homomorphism o—s, and hence, moreover, it asserts
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that o—35 is topologically a homomorphism. But we never know, up to
this time, whether £ is locally compact. Fortunately, however, we can
prove the local compactness of 2. We shall show this fact.

Lemma 3.4. If G,= {e}, then the class of all U (K, €)’s forms a com-
plete system of neighbourhoods of e of G, which defines an equivalent
topology to the original one of G.

Proof. It is sufficient to show that the image % of every neighbour-
hood u of e contains at least one U(K,8). We shall here show that
there are a compact subset K and 8>0 for every ¢ >0 and every z,¢ X
such that

U (K, 8T {5: (o2, x,))<E}.
This is sufficient for the proof (see the footnote 8)). Let us now sup-
pose that there exists a sequence oy, g5, ... 0f elements of G such that

((0ut0y %)) >€ and V(a,pP, pP)< L for pPe K, and n=1,2, ..., where
: n
KCK,C..., and lim K,=2. Any subsequence of ¢y, 65, ... has no limit-

ing point in G. In fact, if a subsequence ay, g,, ... tends to ¢, in G,
there is an integer j for every % such that 07 "o, € U(Kn, i) for every
n

t>7 (Lemma 3.2). Hence we have V(dopP FP) <V (a0pP, anﬂpP)-F-V(O‘n pP,
pP)<—2- for pPeK,. From UK,=9 follows that V(epP, 5P)=0 for
every pP ¢ 2. This means s,=¢, and hence ¢,—e¢, since G,={e¢}. This
contradicts with ((o, %, %)) >¢. :

Let v be an open set {y:((y, x,))<¢’}, whose closure is compact, and
write v,= {y:((y, x,))<¢e’/3}. Since X is separable, there is an element
a,P of 2 for which

a=a,P(v,)>0.
Let n, n,, ... be a monotone increasing sequence of integers such that,
for j=1,2, ..., L

1 J -
;<71 a, JOPGKW,I b

and
aﬂL E U u({aaz xo}) e )0'71,5 3

where s, =e¢. Such a subsequence exists, since any subsequence of {g,}
has no limiting point and since the closure of sv=u({ox,}, €¢)ox, is com-
pact for every s¢ G. For thls subsequence {on,} hold

60P<07zj '01)—0'7; Gop(vl)>gop('u1) V(On ffoP UOP)
a .
J+1

’
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and
1 it 1 ,
o Vi [J oa 01 ] =empty.
4=
This gives a contradiction :

1=5,P(X)Z5,P(U 0z v:)= 23 5P (a7 )

= 1
>a>) =00,
jguj—kl

From Lemma 3.3 and 3.4 follows that, if G,= {e}, then G is a topolo-

gical group and the algebraical isomorphism os—s of G onto G is a
homeomorphism.

Lemma 3.5. The subgroup H= {c:cP=P} and hence G,, being the
meet of all pHp™, are closed in G.

Proof. Let + be an element of the closure of H. Then, by Lemma
8.3, there is a neighbourhood « of ¢ for every given real ¢ >0 such that
U({*P}, e)Du. Since -u intersects with H, ru and hence U ({7P},¢)
must intersect with H. Let 5 belong both of H and FU({zP}, ). For
such 5, we have ¢e>V (cP, 7P)=V (P, vP). Since ¢ is arbitrary, TP=P,
t.e. +€ H. The closure of G, is evident.

By Lemma 8.5, 2, being a coset space of G, is o-compact and
locally compact, that is to say, @ satisfles Assumption A, when G,={e}.

Lemma 3.6. 2 and G satisfy Assumption B,' if Go={e}.

Proof. Suppose that o,pP, o,pP, ... is a Cauchy sequence in £ for
every fixed pP. Since £ is complete, there is a limiting point ¢(pP) of

o:pP, o,pP, ... for every pP. ¢ is evidently an isometric transformation
of £ onto itself. Denote by K the group of all isometric transforma-
tions of 2. Since (2, K) satisfies Assumptions A and B, K becomes a

complete topological group by Mibu’s Theorems 1.1 and 1.2, and Gis a
closed subgroup of K, since G is complete. Hence there is an element
5, of G such that =35, This shows that lim s,0P=0c,pP for every 7 ¢ G.

The subgroup I of the elements which remains a fixed sample point
x, invariant is closed in G, and X is homeomorphic to the left coset
space G/I under the mapping ox,— oI, which can be proved similarly
to Theorem 1.8. From this fact follows that the mapping o-—>ox, of
G onto X is open, and that X,=Gy, is closed in X. Hence X, is com-
plete since X is complete.

Lemma 3.7. X,=G, ts compact.

Proof. Let v(z,, €)= {y:'((y, xy))<e} be a neighbourhood of x,, whose
closure is compact. If there exists an infinite sequence =z, 2, Z,, ... in
X,, for which ((z;, ;) >¢e(i>j;%,7=0,1,2, ...), then we have a disjoint
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sequence of open sets v(%;, €/2), =0, 1, 2, ..., each term of which satis-
fies '
EP(’U(CQ, 6/2)):5P(Tiv(w0; 8/2))
:EP(v(xo, 8/2))

where s ¢ G, z,=+%, and =, € G,. On the other hand, there is a s,¢ G
such that

o, PW(@, £/2)) = P(o; 'v(xy, €/2)) =0 >0,
since X is separable. This implies the contradiction:

1=3,P(X) =5, P( v, /2))= Sja=co.

Thus we see that X, has no ‘infinite ¢-net for any small ¢>0, that is
to say, X, is totally bounded. As seen above, X, is complete, and hence
compact.

Lemma 3.8. Each X,=oG %, ts homeomorphic to X, under the map-
PIng X, —> 1%y (1 € Gy).

Lemma 3.9. The subgroup G,I is closed in G.

Proof. Let o,¢ GyI. Then o,x,¢ X,. Hence there is a neighbourhood
V(oo €)= {¥: (Y, o4x,)) <€} disjoint with X,. This shows that a neigh-
bourhood u({c.x,}, €)o, of o, does not intersect with G,I.

Write :

(X5, Xo))=inf ~ ((x, 2))
xeXG’.t EeXgr .
=inf (o7, o'7'%0))
T, EG

— inf <(xo, o 10"7’(170)).
TEG,

Obviously we have i) ((X;, X.))=0 with equality if and only if ¢’ € G, I,
ii) ((Xm Xo’)):'((XG” Xo))) and iil) ((Xo, Xo’)) + ((Xm Xc”))z«Xa’: Xa”))' We
shall prove only iii). Given any real € >0, there correspond two elements
+ and + € G, such that

(X, X)) +-§—><<xo, o7 0"ry))
and

(X, X)) +§><<xo, o l6"7',)).

Hence (Xors XG))+<(X0! Xc">>+€>((x0’ o lo'v,)) + (25, 0"410'”7’,“"0))2((0_10‘/7370’
o 6"'7'%0)) = ("7, 0'7'%0)) =((Xor, Xor)). ‘

This metric ((X,, X)) defines a topology of Y= {X,}, which is equi-
valent to the topology induced from the natural topology of the left
coset space G/(G,-I) under the mapping X, — oG,[. On the other hand
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the factor group G/G, is regarded as a group of isometric transforma-’
tions of Y. ‘ '

Lemma 3.10. If X and G satisfy the conditions, i), iv), v) on page
53, then Y and G|G, satisfy the same conditions.
‘ Proof. i, iv) are evident (see D and E on p. 60 of [20]). Let o,, o,

... be a sequence for which +,X,, ¢,X,, ... forms a Cauchy sequence on
Y for every X,. In the other word, ¢, oy, ... is a sequence, for which
there corresponds a sequence =y, 7y, ... of elements of G, such that

((09Tn0% oy Omrmoxy)) —> 0 as m, m —> o

for every o ¢ G By the condition v) assumed on X and G, there cor-
responds ¢, € G such that

lim o,7,0%,=0wx, for every o ¢ G.

21> 00

This means that
lim ¢,X,=0,X, for every X, ¢ Y.

By this Lemma, G/G, can be considered as a o-compact and locally
compact topological group. This topology of G/G, is equivalent to the
natural topology of the factor group of the topological group G modulo
Go, because of the equality {p:((pX,, X,))<e for o ¢k (compact set)}=
{p: ((paxy, oxy)) <t for o € k} -G,and of the compactness of {¢7,:0 €k} and
of {X,:0¢k} in the respective spaces X and Y.

From Lemma 8.4 follows that G/G, a group of isometric trans-
formations of Y, is isomorphic to G*, a group of isometric transforma-
tions of 27, as a topological group, if P, is absolutely continuous with
respect to the invariant measure on Y= {X,} (see (8.4) below). Hence
the homomorphism ¢ — 5 of G onto G” is open and continuous.

Define my(C)=m({o:X, e C}) for every Borel subset C of Y. This
measure is 8 unique G/Gyinvariant measure on Y.

Since X, is a homogeneous space with respect to G,, and since G,

(or more precisely Go/( ) relo'+")) can be regarded as a group of iso-
TEWF

metric transformations of the compact space X, which satisfies the
conditions i)-iv) of page 53, there is one and only one G invariant
measure n, of total measure 1 on each X, (see Lemmas 3.7 and 3.8).
These measures fulfil evidently the relation

no(Bo):ne(a'_lBo>: Bc:Bf\Xc) B € 23:
and hence it holds that
(8.3) M(BA~C*)= j n(BJm(dX.),
where B,=B, X, and C*={ox,:X,€C}. In fact, let
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Q(BAC*):Scﬁo(Bc)mY(dXo)'.
Then a
Qe(BACH)=Q(pB~(pC)™)

= ‘LO (o~ lpB(P— xg))my(ch>

— X e BN (X)) = Q(BACH).

From the uniqueness of the G-invariant measure on X, we have (3.3).
For an absolutely continuous measure P with respect to m on X,
we have

P(B~C¥)— SB  p@)m(da)

— Lm HdX) L p(@)n.(d).
Since P(X)=1, the integral
[, p@m(do)
Xo
has a finite value for my-almost every X,. Write

| PX)= | p@n.(do).
Then

‘ B o(d _
P(Br\C*):Scf'X zgz;zoéd;ﬁ; pn(Xc)mY(ch)
and |
(3.4) PAC)=P(CH)=| p(XJmr(@X.).
Hence we can define the cohditional probability as
o S m P @)ns(d)
P(B:X,)= P @)(da)-

From the definition of G, we have
p(vrx):jn(m) m-almost everywhere on X for ¢ G,.

" Let Sc: {517 (EXG) : p(x)/pu(Xo) >1} ’ and R,,: {x (eXG) . Z’)(Q‘J)/pn(XG) < 1} .
If there is a subset C of Y which is of positive my-measure, and on each
X, of which n,(S,;)>0 and n,(R,)=0 hold, then P(X)>1. This is impos-
sible. Hence n.,(S,)>0 implies n,(R,;) >0 for my-almost all X,. However
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this is a contradiction, for there exists an element ¢ G, such that
no(rS;~F;) >0, from x) of Theorem 1 4. ‘
Thus we have

p(x)=p(X,) for x e X,, m-almost everywhere on X,

and hence
P(B: X,)=n4(B,) my-almost everywhere on Y.

From this follows

Lemma 3.11. A Geinvariant statistic exists and satisfies 3), 4) and
5) of Assumption C. And

(3.5) P(B~C*)= jcno(Bs)pn(X(,)my(ch) .

Therefore, from this lemma and b) of section 1.2, we can see that
the mapping 5P — 5Py is isometric and hence G!={%}, and that G is
isomorphic to G¥ as a topological group.

Lemma 3.12. Suppose that g, is a locally compact group, and
9,00 D.... 00,

is a sequence of closed subgroups of g, such that g,., is a normal sub-
group of 9,(n=0,1, 2, ...) and that ‘
(8.6) N 9u={e}.

=1

If factor groups ¢./9,..(n=0,1, ...,) are all compact, then g, is compact.

Proof. If g,/g, is compact, then g9,/9,., is 80, since g,/g, is isomorphic
to (90/0n+1)/(0n/0nr1) and since ¢,/9,., is compact. By the mathematical
induction every g¢,/9. is a compact group (n=1,2,...). Denote by g*
the direct product of topological groups g.,/9:, 9o/9s ..., and by ¢’ be a
closed subgroup of ¢* consisting of all elements (09, 695 ««.; 0Gny -« .):
o €9, By Tichonoff’s theorem g* and hence ¢’ are compact. By (3.6)
the correspondence ¢ — (a¢;, 692 + .., 69y, ...) Of g, onto ¢’ is 1:1, and is
evidently an open isomorphism. Hence the compactness of g, follows
from that of ¢'.

- Lemma 3.13. The statement 2) of Assumption C is fulfiled.

Proof. Let S be an everywhere dense countable subset of X, and
write J,= {r:+x,=2,,1=1,2, ...,n}={e}. Then the subset S,= {x:J,x=2}
of X is closed in X, since y, ¢S, and y, >« imply ¢’ €8S,. Denote by
a2’ one of the boundary points of S,. Such a point exists because X is
connected by the condition i). Let v(z’,¢) be a neighbourhood of '
whose closure is compact, and z,,, a point of (X-S,)~v(x’, €)~S. Since
every element of ./, is a isometric transformation, ((+2,.:, )= ((@n.1,
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z'))<e for every reJ, Hence J,&,., is closed and contained in (@, €)
and hence compact. By Theorem 1.2 J,/J,.; is also compact.
By the repetition of the above procedure we have a sequence

JDJo ... DS, D...

of subgroups of G, where J,,, is a normal subgroup of J,(n=1,2,...)
and

ﬁJﬂ: {e}. (by the remark of the footnote 8).

=1
Hence the compéctness of J, follows from Lemma 3.12.

Theorem 3.1. Suppose that a sample space X and a transitive group
G on X satisfy the conditions i)-vi) on page 53. Then 2 satisfies As-
sumptions A and B, and hence G can be topologized. Further the homo-
morphism o —>3 of G s open and continuous, and the kernel of this
homomorphism s (70. Assumptions C and D are fulfiled.

Proof. From Lemmas 8.10, 8.11 and 3.4, G¥ can be topologized
such that the isomorphism oG,—35r of G/G, onto G is topological.
Since @7 fulfils Assumption A (by Lemmas 3.10 and 8.5) and since
oP —5 yPy is an isometric mapping of 2 onto 2% (by (8.5)), £ also satis-
fles Assumption A. Hence G- can be regarded as a topological group,
where U(K, ¢) forms a complete system of neighbourhoods of ¢, and the
mapping s — 5y is a topological isomorphism of G onto G as seen in
Section 1.2. Thus we can see easily that the homomorphism ¢ is
open and continuous. /

Now we shall prove that (2, G) satisfies Assumption B. By Lemma
3.6 and 3.10, (2%, GY) satisfies Assumption B. Suppose that ¢,0P, o:pP,

. 'is a Cauchy sequence in £ for every pgP. Since pP — pyPy is a iso-
metric mapping, (6,0)rPr, (o:p)rPr, ... is a Cauchy sequence in 2% for
evero pyPy. Hence there is a 3y ¢ G¥ such that

lim (6ap)rPyr=5yprPr, prPy € 7.

By applying the isometric mapping oyPr — P again, we have

lim 6,p0P=04pP, P ¢ 2,

7%-»00

where ¢, is an element such that (s0)r=5v.
The last statement follows directly from Lemmas 3.11 and 38.13.
Remark 3.2. In this section we have assumed that the sample space
X is a metric space, and that G is a group of isometric transformations
of X. However a G-invariant metric can be defined in X, if X is a
nuiform space satisfying the first axiom of ecoutability, where the neigh-
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bourhood Vn(:v) is symmetric and G- mvarlant i.e.

a) ye V() 1mphes z e V,(y),
b) oV, (x)=V,(ox) for all s¢ G,

¢ Vi@)=1a).
(see Bourbaki [5, Ch. IX, p. 22]).

3.2. Reductions to a homogeneous space.

Lemma 3.14. Suppose that X is the direct product of two metric
spaces Y and Z admitting transitive groups G and O of isometric trans-
formations respectively. If X and the group G'=G x O satisfy the condi-
tions 1)-v) of the begining of the present section, then Y and G also
satisfy these conditions. Further the topology of G induced by the metric
of Y is equivalent to the relative topology of G as a subspace of the to-
pological group G'.

Proof. Since the conditions i)-iii) and v) are evidently satisfied by Y
and G, we shall show only that iv) is fulfiled. If oY, 0wy, ... is a Cauchy
sequence of points for every ye Y, then (s, 2), (639, 2), ... is also a
Cauchy sequence in X for every ye Y and z¢ Z. Hence there exists an
element of ¢,¢ G such that ‘

lim (o,y, 2)=(oY, 2) for every (y,z)¢ X,

78>0

that is,

lim o,y=0y for every ye Y.

N>

The last statement of our Lemma follows directly from that ((¢rz,
+x))={((ox, )) holds for every € G, ¢ O and z ¢ X.

Theorem 3.2. Under the same assumptions as Lemma 3.14, 9 satis-
fies Assumption A, G becomes & topological group, and G is homomorphic

to G as a topological group, if the initial probability measure P defined
on X and the o-field B of all Borel subsets of X is absolutely continuous
with respect to the G’-invariant measure on X.

Proof. By Theorem 38.1. the mapping ¢ —35 of G’ onto G is open
and continuous, where G’ is a group of transformations on the metric
space 2'={sP:s¢G’'}. Under this mapping G is mapped onto G, and,

since G is closed in G', G is closed in G'. Hence £ is closed in £/, and
satisfies Assumption A. From the relation V(erpP, rpP)= V(epP, pP) for

every +€ O and o, pc G, it follows that the topology of G induced by
the absolute variation metric V of @ is equivalent to the relative topo-

logy of G as a subspace of G’. Thus we can see that G is homomorphic
to G under the mapping ¢ — 5 as a topological group.
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Theorem 3.3. . Suppose that (S, S, p) is a probabililty space, where
(S, ©) admits a group I" of transformations satisfying the conditions i)—
v) in the beginning of the present paper, and that p is absolutely continuous
with respect to the [-tnvariant measure on S. Let (X, B, P) be the direct
product probability space of a finite number n of (S, S, p), and G be the
group of all transformations (o, o, ..., 6):(Si, Soy+ « +5 Su) = (381, GSs, « . .5 6Sy).
Then the distribution space 2= {(o,0, ...,0)P; o€ I'} satisfies Assumption
A, and hence G becomes a topological group (by Theorem 1.1), in each of
the following cases :

(@) I' s commutative,

(b) S is compact.

Further, in such cases the mapping o—>(o,0,0,...,0) of I" onto G
18 open and continuous. :

Proof. Denote by G’ the direet product group I'x I'X ... xI" of n
groups I':(cy, 03y vy )+ (S1y 8oy « v oy 80) =(0481, G280y -+« ., 04Sy). The space X
and the group G’ on X satisfy the conditions i)-v) in p. 53. Hence by
Mibu’s theorem (Theorems 1.1 and 1.2) G’ can be topologized by the
metric of X such that the operation of product is continuous. Evidently
G is closed in G’ and is isomorphic to I as a topological group.

Case (a). Denote by O the subgroup of G’ consisting of the elements
whose first coordinate o, coincides with the neutral element e of I'.
Since I' is commutative, and since the decomposition (e, oy ..., 0,)=
(01,015 « ., 01)-(8 a70s, ..., 07'0,) I8 unique, G’ is the direct product of
G and O. Moreover, fixing a point (s, ..., s”) of X, it follows from the
commutativity of I' that the mapping (o, o5 « .. 7n) > (5% ..., 0us") Of
G’ onto X is 1:1. Hence X may be considered as a direct product space
YXZ:Y={(s,8 ...,8):5s¢8} and Z={(s°, 05", ..., 0,80, € [,1=2, ...n},
and G and O are transitive groups of transformations on Y and Z re-
spectively. Therefore from Theorem 8.2 follows the conclusion.

Case (b). By Theorem 8.1 G, a group of transformations of £’
={oP:0¢ G’} induced by G’, becomes a topological group and the map-

ping (o4, 64y « ., 00) = (01, G5y ..., 0, Of G’ onto G’ is a homomorphism
topologically. Hence ¢ —> (o, o, ..., 0) of I' onto G as a subspace of G,
is open and continuous. Since G is closed in G/, G is closed in & .

Hence £ is closed in 2/, and satisfies Assumption A. Hence G becomes
a topological group as a group of transformations of £, by the aid of
the absolute variation metric of . On the other hand, the identical

mapping of the subgroup G of G onto the group G of transformations
of © is continuous, because every neighbourhood UT {(s, o, ..., 0P}, €],

in G, of & is the intersection of G and a neighbourhood, in &, of @.
From the compactness of S follows that of /', of G, and of the sub-
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group G of G. Therefore the mapping o — (0,0, ...,0) is open and
continuous.

4. Some examples.

~a) The permutation parameter. Let S be a set of & mutually ex-
clusive events s, 8,, ..., s, with probability »,, ps, ..., p, (Zp,=1) respec-
tively, and denote such a probability space by (S, p). Consider the group
I' of the permutationss 0of 1,2, ..., k. Every element ¢ of I" introduces
an another probability space (S, sp) as follows:

ap(8;) =0(So—1055) =Po-101; =1, 2, ..., k.

Suppose that (X, 5P) is a direct product probability space (SxSx

X ... XS, epXapX -+ - xXaop) of n same probability spaces (S, 5p), ¢.e. that

- X is a set of the sample points z=(,, ..., x,) in » independent trials,

‘where the probability of occurrence of n, events of the first kind, 7, of
of the second kind, ... ete. (Zn;=n) in some order is give as

. 12
(4.1) » Dot Daagey « « » Datagy 2

Let G’ be the group of the transformations o:(x,, ..., ,) = (c%,, o%,,
eo.,0,) of X for oI, and G, the group of the permutations of the
coordinates of z=(x,, 2,, ..., 2,). Evidently every element of G, leaves
(4.1) invariant, and the group G=G'x G, of transformations on X induces
a distribution space 2={cP:0€G}. Hence the G invariant statistic
y@)=(n, ny, ..., n,) for the above x is sufficient for £, and the distribu-

tion oyPy on the range Y of y(x) is given as

n!
nlny! ... my!

orPy[(ng, ngy o\, M) = o1y Potaeay « + « DoFrarss

when gP is the true distribution of .
If (n,mn, ...,n,) is a permutation of a non-decending sequence
(m,, my, ..., m;), we put ,
z(nla nz; v ey nk>:(m1! m27 e 00y mlc)

V'Ve‘ can see eagily that z(y(x)) is a G-invariant statistic, and that its
distribution is ‘

Pz(mn my, -“’mk): nl E 7"1’?2—--?2"
: m,! myl ... myl
irrespectively of the distribution of z, where the summation is over all
different permutations (n,, n, ..., 1) of (m, m,, ..., m;). Hence the con-
ditional probability of (n,, n,, ..., n;) for given 2(y)=(m, m,, ..., m;)
when oP is true is '

™. (12) For the simplicityfwe shall asstme that (4.1) has a distinet value for a distinct set
(/nb gy - 'nk)'
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7] 727 2y
ZU« 100 pc—T( Y e e pn—l(k‘
.
1)1 7
> .. DRE

Evidently G is a finite group, and hence compact. The fiducial
measure P(:2) is such that

”‘o(l) pmoCZ) pmo(k)
7G(1) P02 mo(k) °
200 Ppr® L Pt

cel’

P(G:2)=-2L

Suppose for example that A=0Q={5P} and . W(aP TP) E(pc,-xm
D--15)2. Then we have

bGP, H=31 31 @i—po-xp-;mz?@:z)

=>) 2 (pi+p0‘IP"ICi)~2pi Do—1p-1¢5)) P (e: z)

pEL =

:22, Z (pﬂgi_pipc_lp-l(i)) P(;O— . Z)

pELT =1

—2[(3p)— (Z D E Do-1p-15> P(p: 2)]

i=1

>

2[ 2 —b'(0)], (say).

Hence the PGSB d.f. is such that if the observed number (n,, n,, ..., %)

is a result by permutation o of z=(m,, m,, ..., m;), we decide with pro-

bability 1 that &7.P is the true distribution, where r, maximizes
b,(T) Z Y Z p'c—lp-lc,,) P(p z)

2=1

H

For k=2,
b'(oo) M=p7™ p2*(pi-+ p3) + 207+ pi*!
for the identical permutation ¢, and
b (o) M=2p7" " pi**' + (i + 13) P 0¥
for ,=(12), where M=p7 pr2+pmp. Hence if D <D, then
R iy i

and we have b'(s)=b'(s,). This shows that the estimating process, which

indicates 4,P or P according as the number n, of ceccurrences of :the
event s, is greater or smaller than %, of s,, is a PGSB d.f.

‘ For k=3, suppose that p,<p,<p;, and denote

Q=D+ D1+ D5, A =D0i+200;5, G=pi+2p,Ds, |

Ay ="D3+20:D;,  Qy=D,Do+ DD+ DyD15
and
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Py=ppipi, Pi=prpp?, P,=pypps",
Py=prpiiprs, P,=plpfpf, Py=pppk.
Then we have

4.2) A=y >0 =gy g™ Qg = Uy > g,y
bPy>P,>P,>P, P>P,
4.3) P,>P,>P;>P, P,>P,.

Since the group G’ consists of elements o,=tidentical, ¢,=(12), 0,=(28),
a,=(31), 0,=(182) and 0,=(123), we have
b'(a0) =P+ a,P; + as Py + 0, P+ 0, P+ a,P,,
' (e)=0;Py+a,Py+aPy+ a,Py+ aPs+ a, Py,
b'(09) =P+ Py + @, Py + ay Py + a,Ps + a, P,
b'(03) =Py + @, P+ a, Py + a, Py 4 a3 Py + a, P,
b'(04) =0, Py + s Py + Py + 0Py + 0, P+ 0, P,
b'(05)=a,Po+a,Pi+ Py + P, + a Py +a, Py,
Therefore, following from (4.2) and (4.8)
b'(ey) = max b'(a;).
0<i<h

This shows that the PGSB d.f. is a non-randomized estimation such that
if the triplet (n,, ., ;) of the numbers of occurrences of the events
8;, S5, 83 18 a permutation o of (m,, m,, m;), then the distribution P is
accepted. " ' '

For k=4, calculations are rather troublesome.

b) The discrete location parameter. Let X be Eueclidean n-space
R*, and P is a discrete distribution which distributes on x;;=y;+ 7,
the probability s;p;;, where ¥,=(¥;y, Y5 -+ +» Ysn) i8S & point in the hyper-
plane 31y,=0, 2=(L1,...,1), 8>0, 3 5=1,p,=0, 3l py=1, and
G j=1,2, ... 2 "

The group G of translations %:x — x+ Az, of X induces the distribu-
tion space 2= (AP} :

hP(x, 5+ ) =8D;; .
However £ is discrete and non-countable, in fact

V(EP, P)=sup inf max [ |s;0,;—Ss:iDirs s 8:0:51>0,

150 <oo 158/ oo
1=j<ee 1S5/ <

whatever %2 may be. Hence £ is not necessarily o-compact, so that
Mibu’s Theorems 1.1-1.4 can not be directly applied for this problem.
Let Ay, h,, ... be a sequence of real numbers such that ‘
1) nh+nh,+ ... +0h,=0 implies n,=n,=... =n,=0 for every
integer k=1, ' ‘
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2) for every r;; there is one and only one linear expression
. ,
= Z naka
. a=1
‘with integral coefficients n,, n,, ..., 1. :

Denote by G’ the normal subgroup of G consisting of all linear
combination > #n.h, of every finite number of 4, 4., ..., h, with integral
.coefficients n,, n,, ..., n,. The distribution space £’, induced from P by .
‘G', is a discrete but countable space, and hence is s-compact. Evidently
G’ may be considered to coincide with G’. Let JJ, be the subset of G’

&
.consisting of all >} n./A, with |n,|<k(a=1,2, ..., k) for a fixed positive
o=1

integer k. Then we have

G Jk:G’
k=0
and J, is a finite set. Hence there is an integer k>0 for every finite
subset B such that J,DOR. It is obvious that G’ is an A-group. Hence,
‘by Theorem 2.2, we have ‘
sup r(hP, P) = sup r(kP, P)= Z F, for every d.f. o
hPEQ

if there is a finite subset R of G’ for every €>0 and every lnteger
4 (0<t< ) such that

> wlh+tr;)p:,; > F,—¢ for every he G,

”we’g

‘where F_-mf Z wh+7;;)p;;. This is Theorem 11.3.1. of Blackwell-

e j=t1

Girshick’s Book [4]. ;

The admissibility of this d.f. has shown by Blackwell [2] under a
preferably weak condition.

c) The continuous location parameter. Let X=R"*(n=2), B the class
.of all Borel sets of R*, and P a probability measure with a density
function f(@)=f (2, %o, ..., 2,):

P(B)sz(xl, Doy o v oy Xy AXAX, . .. dx,, BB,

where the integration is the usual Lebesgue’s one.

Suppose that G is a group of transformations (z, @, ..., T.) >
(%, +o, 2340, ..., 2,+0), Where ¢ is a real number. This group G induces
.a distribution space 2= {GP:—co<g<co} from P as follows:

3P(B)= L F(@y, By o -, %) Ay dy. . . dy

:j F@i—0, Ga—ay .y Ty—) Aty - . . Ay
B . .

Such a parameter o is called a location parameter.
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By Theorem 3.2 the mapping ¢« —>5 of G onto the parameter group
G is isomorphic topologically, that is, G is also considered as the addi-
tive group of the real numbers. Hence G is an A-group.

The fiducial measure P(L:2) for 2=(0, z,, ..., 2,) is

ﬁ(L:z):Lf(a, 2ty ..., tat oo h(2)dz.
Suppose that A= and WGP, 7P)=w(+—o0s), and write

bur, z>=5+

w(o+7) flo, 23+ 0y ..., 2,+0)do,

b(r, 2) :S+°°w<o+—,-) flo, 2540, « oy 20+ Vo,

where z2=(0, 2,, ..., 2,). If there is, for every z and every positive ¢,
~an integer m such that

bu(r,2)> inf b(r,2)—e for every real =,

—20L T +oo
and if -, minimizes b(r, 2), then the PGSB d.f. exists and is the proce-

dure in which, when x=(z,, ,, ..., %,) is observed, (x;++)P is accepted,
where 2=(0, Z,— 2y, . .., T, —2Z,).

i) If we)=o® and if r (4120, 240,y « .., 2nta) do<oo for all
+, then we have

. +oo . ‘
'rz:—S of (0, 23t 0, ..., 20t o)do, 2=(0,2,, ..., 2,).

The minimax risk of this decision function is given as

++ +oo )
S & o f(xy, T+ oo, T+ 2y) d2d, . .. da,

—oQ -0

_S“" - S_: 2h(E)dz, . .. de,.

—_—

ii) If w(r)=|rl, then 7, is such that
jtz (o, 2540, ooy, 2yto)do=%,2=(0,2, ..., 2,)

The above two: estimates are the ones obtained by Pitman [18].

iiiy If f(o,2+0, ...,2,+0) is a monotone decreasing function g,(t)
of t=|o—o,| for every fixed 2=(0, 2, ..., 2,) and w(r) is also a monotone
increasing function of |+|, then the observed value (z,, z,, ..., z,) indi-
cates the estimated value z,—a, for 2=(0, ¢;—x,, ..., ,—2,). This is a
maximal likelihood estimate as well as a PGSB estimate. '

iv) Suppose that f(z, x,, ..., x,) satisfies the same conditions as
the case iii), A is the class of all interval I,,=(a, b): —co<a<b< -+ oo,
and that w(l,)=[b—a| if a<0<b;=1+4|b—a] if otherwise. For such
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problems, the observed value (x, @,, ..., z,) indicates the estimation by
the interval (s.—a, 4+, 0.4+ 0, +a) for 2=(0,x,—x,, ..., ¥,—x,), where
9.(0)=1 for |2|<s; and 9.(t)<1 for {t|>c,. This procedure is minimax by
Theorem 2.7.

d) The location-scale parameter. Let X, B and P are the same as
defined in ¢). Suppose that G is a group of transformations «(x,, x,,. .-,
Z,) = (0%, 0%y, « . ., 0%,), Where ox,=a,%;+0b,, + 0 >a; >0, + 0 >ph,>— o,
(@sz=0a,a. and b,.=a,b.+b;). Then

3P(B) :P(a-lB):S F @y, Ty - -y @) dyda, . . . da,
5—1}2

=1 S f(xl_b"’ , x2~b5’ ...,M>dxldx2...dxn.
a; JB s s Qs

We shall consider as 2 the whole of sP’s. In this case the pair (a., b,)
is called a location-scale parameter.
Write, for every point x=(x,, %, ..., T,),

:E:E(x)zznmi, s;s(m):/z (x;-z—@z: VAL I

n

and z:z(m):< T Ll ﬁ”i> .
s 5 s
Denote-by X, the line x,=z,=...=x, and by z, a point (1,1, ..., D).
Since every z ¢ X, is expressed uniquely as
T =S8T + XX,

and since the G-invariant statistic z(z) has its values on the unit sphere
Z of the hyperplane z,+2,+...+2,=0, we can write :

f@)=p&@), s), 2()
and

dx,dx,. . .dx,=s""2 dxdsdz,
where dz is an element of area on the unit (n—2)-dimensional sphere.
Denoting by B’ the image of B(e B) under the mapping z— (x(x), s(@),
2(x)), we can easily see that

3P(B)=_1 S pl b ,i,z>s”‘2da_3ds dz.

Z;B'\a, (18

Hence, by writing

h(2) :f{jm P, s, z)d:ﬁ}s"‘z ds,

0

the distribution on Z induced by the statistic 2(z) is

5P,(D)=P D)= Sph(z)dz
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and the conditional distribution for given z is
p(w;bc, ELI
=P(B: ) L Qo % o azds
o ( .z>*EgSB’,\X’z h(z) | 3
where D is a Borel subset of Z and X,/={(Z, s,2): —co <ZT< + o0, 0<s<
+ e }. Hence the ﬁducial measure for z is such that
J— 1 . _
P(L:z =—~—S Z, s, 2)s" *dxds.
(L:2) 0 @, s, 2)
Now consider the group O of the rotations around the fixed axis.
X,. Since Z is a homogeneous space with respect to O, the algebraically

homomorphic mapping ¢ -5 of G onto G is open and continuous from.
Theorem 3.2. However no element p of G remains each oP invariant,
if p is not the netural element, by Lemma 8.7. Hence ¢ —75 is an iso-
morphism as a mapping of topological groups.

Denote by ' the distribution space induced from P by the direct
product G'=Gx 0O, and by G, the subgroup of G’ remaining every dis-
tribution of @’ invariant. Since the intersection of G, and G contains
only the netural element as seen just now, G, must be a normal sub-
group of O. But O has no closed normal subgroup except for O itself
and {e}. Hence G,=0 or G,={e}.

If G,=0, then £’ and G coincide with £ and G, respectively.
And (#(x), s(x)) becomes a sufficient statistic for Q. '

i) Suppose that A=G@, and that the loss function W (P, 5)=w(as, b,)

is either a bounded function on the upper half plane G or a continuous
function satisfying

lim w(a, b)=lim w(a, b)=-c for any fixed b,

w0 a»oo

and v .
lim w(a, b)=-co for any fixed a>0.

b> o

Let (a., b.) be a point of G which minimizes
1

b[ (a, b), 2] :7&—(—5 j:oﬂiow(as, sb+Z)p(x, s, z)dﬁ] s"2ds.

Then the decision function ¢°:
@°[(sa,, sb,+ %) :sz+xx,] =1 for every s>0 and %
is a PGSB d.f. |
ii) Let g, is a normal subgroup {(1,d);—c<b<w}. If A=G/g,,

W(P, g,(a, 0))=w(a) is either a bounded function or a continuous func-
tion such that lim w(a)=1lim w(a)=co,. then the invariant d.f. ¢°:
a>0 ) a-»co

¢0 [(a’zsi O) ‘G- szt x(,] =1
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is a PGSB d.f., where o, minimizes
b(a, z):—}——rww(as) UM (%, s, z)d:?;:I s*~2ds.
TH@Y - |

The distribution of decision under ¢° when sP is true is independent of
b;. (See Theorem 2.6)

iii) Let g, is a subgroup {(a, 0):0<a<<ew}. If A is a right coset
space of G modulo g,, and if W(P, g, (1, b))=w(b) is either a bounded
. function or a continuous function such that lim w(b)= co, then ¢°:

b> +oo
z+0b,
@O(Qa . (_j
\ S

);sz+:7c‘x0>:1,
where b, minimizes

b(b, )= j“’" jm w( ”l:_’l) p(@, 8, 2)¢"*ds d

0

—o0

The distribution of decision under this ¢° when P is true depends
bs+b,

If P is a normal distribution, such a decision function is of Student
type. '

e) The rotation parameter. Given n independent and identically
distributed random points s, s,, ..., s, on the unit sphere S in R?, whose
distributions are absolutely continuous with respect to the element of -
area on S and has a density function f(s), we consider the space X of

only on , if b,=b, for every ze Z. (See Theoremt2.6)

such samples £=(s;, s, ... S,) as a direct product space SxSx...xS of
n spheres. Denote by o, r, ... the rotations on S. The group G of
transformations on X, whose elements are (s, s, . . ., 8,)—>(cS, 0S5, « . .5 08,,),

induces a distribution space 2= {sP}:
EP(B):P(a“B)zS I flo~'s) ds, . .. ds,.
B i=1

By M(z) we denote the »xn matrix (m(x)) whose %,j element
m,;;(x) is the smaller angle between two segments joining the origin with
s; and s; respectively. This statistic M(x) is G-invariant, and its dis-
tribution does not depend on o. '

Suppose that #>8. By Theorom 8.3 G is isomorphic to G. Thus
G is compact and hence A-group. Therefore for this problem the PGSB
d.f. exists if the loss function is continuous. ‘

f) The general linear transformation parameter. Let X be the set
of all »xk matrices x=(x;;) (n>k), and P be a k-variate normal dis-
* tribution: :

P(dm):—-—‘l——-— e—%tr(m’x)lz dﬁvi,;.l?’)

Lok 2,J

(2 m)*

(13) «’ is the transposed matrix of z.
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For this example, A.T. James’ paper [8] may be referred. Since every
regular kxk matrix ¢=(o,;) defines a right transformation & - s of X
onto itself, the group G consisting of all of these transformations induces
the distribution space 2= {oP}:

M

aP(dx)~ IZI ; _%:rcz:ﬂm'ax){-];dxu.
(2 ) 'nc T.J

where 3=¢'¢. That is to say, £ consists of the sample distributions
of the normal k-variates «;, ..., 2;, with means zero.

X is not a homogeneous space with respect to G. However, if we
introduce on this space X the group O of the left transformations x—6x
by nxmn orthogonal matrices 6, then X becomes a homogeneous space
with respect to the direct product group G'=GxO. Since X satisfies
the conditions a), b) and ¢) of Remark 8.2, and iv), v) of the beginning
of Section 3, and since the G’-invariant measure on X is

ia dim, i

77’.'/.
23
|z’ |7

the mapping ¢—5 of G onto G is a homomorphism, by Theorem 3.2.
Evidently there is no right transformation (if not neutral) on X remain-
ing every quadratic form ¢r(3-'a'z) invariant. This shows that G,
consists only of the neutral element, and that ¢ >G5 is an isomorphism
topologically.

Thus we see that G isomorphic to the general linear group G of
the regular kx k% matrices. But we cannot yet to prove that G is an
A-group. Hence we never know whether or not our method of con-
structing the invariant minimax decision function is wvalid for this
problem.
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