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1. Introduction. The stochastic equation has been an important
article in the recent probability theory and proved useful especially to
reveal functional dependences between different stochastic processes, or
construct stochastic processes from: other basic stochastic processes.
Among others we may mention important contributions due to S. Bern-
stein [1], P. Lévy [9], and K. Ito [6]. As is well known certain types
of parabolic partial differential equations define Markov processes. But,
as shown by these authors, stochastic equations are sometimes more
convenient to construct Markov processes. In this paper we shall show
that a considerably general class of Markov processes defined by stochas-
tic equations has transition probability functions satisfying parabolic
differential equations. This fundamental fact seems not yet fully es-
tablished, while differentiation of the family of operators associated
with the transition probabilities has been discussed [7].

Suppose that m(t, z), o(t, &), —oo<x<oo, t,<t<t,, are continuous
funections of (¢,x) satisfying the uniform Lipschitz condition

(1.1) ity @) —m(t, @)+ |o(t, ) —o(t, )| el —a|

with ¢ independent of ¢ and x. Define a Markov process z(t) by the
equation due to K. Ito,

(1.2) o) =2+ SZ miz, 2)dc + S: o(z, 2)dB(0) ,

where B(t) is the normalized Wiener process B(f,)=0, E(4B(t))’=4t.
Since in the following arguments the length of the ¢-interval is imma-
terial, we shall hereafter restrict our considerations to the unit interval
0<t<1. As is well known (1.2) can be reduced to the simpler equation

(1-3) yO =1+ | ale, Y)dr+a(t)
by means of the transformation
=0620), oA=L,

where x(t) is another normalized Wiener process,

ot ot m) ot ety O

a(t7 y)': -
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and z=¢(t,y) is the inverse function of y=@&(¢,2). For considerably
wide and practically important classes a(¢,y) also satisfies the Lipschitz
condition
(1.4) la(t, z) —a(t,z) | <c|z—2| .

Therefore we are sufficed to consider simply the class of processes de-
fined by (1.83). For instance, under the conditions imposed on m(¢,x),
a(t,x) in Feller [4] a(t, ) satisfies the above Lipschits condition and,
in addition, becomes bounded. In this respect the following Theorem 2
will be a partial improvement of Feller’s result. It will also be
noteworthy that if the transition probabilities F'(s,z;¢,y)=Pr{y()<
Yly(s)==«} satisfy

€ | areaty=ot—s,
€ | @—0)dFes Ly =mo)E—s) tot—s),
€ | e—erareeity=ceat-s-+ot—s,

‘with o-terms having suitable regularities, then y(?) satisfies (1.1). Hence
if, in addition, ¢ and m satisfy differentiability conditions required in
Theorem 2, F(s,z;t,y) is also differentiable and satisfies
2] 0 1 o2

1.5 {,_ ,2)-0 4k Zs,x—#}ﬁ' 5,2 t,9)=0.

(1.5) (s @)+ 5o 6 @) F (575 1)
This amounts to the fact that we can construet the fundamental
solution of (1.5) by means of the solution of (1.2), i.e. by the probability
measure on the function space.

2. Differentiability of the transition probabilities. We shall prove
the following two theorems. | |

Theorem 1. Let a(t,z), —ooax<oo, 0<i<1, be continuous and
satisfy (1.4), and F(s,x;t,y) the transition probabilities of the process
determined by (1.8). Then F(s,x;t,y) is given by

@LY  Fewita)=| At 0)Bew by
A=E{Ly(-Dly@®)=y} ,

— 1 ~(y-y?[2t-
R M
@12  Le) = ew| [ omnde — L @],

where E denotes the expectation takern under the probability measure as-
sociated with the Wiener process y(t) conditioned with y(s)=y,, y()=y -

Theorem 2. Let a(t,x), —ocolaxoo, 0<t<1, be continuous in
(t, ), continuously twice differentiable in =, with bounded a.,(t,x) and
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G, 2)=0(2|*) for some k>O0. Then the transition probability
F(s,x; t,y) is continuously twice differentiable in x, once in t, and satisfy

2.2) {ai+ a (s, x)_a_+ ; :

}F(s,oc;t,y)=0 .

To prove these theorems we require several lemmas.

Lemma 1. Let z(t) be the solution of (1.2), f(t x) be continuous,
then for (my real 1

@.4) E exp [a SO £(r,2)dB() J?SO £, z)df]g :

This is a generalization of Lemma 10 in the previous paper [12],
where we assumed m, o and f to be bounded. As will be clear from
the proof of Lemma 10, the boundedness of m, o is necessary only for
(5.9) of Lemma 10 but superfluous for (5.10) [12].

Proof. Define

Fr(0,2(0)=Ff(z,2(z)) I |f(r,2()I<N,
=N if  f(z,2(c)) >N,
=—N if  f(r,2(r))<—N,

N>0.

Then Lemma 10 [12] and the above observation give us
E exp |: S fx(r,2)dB(z) — S fN (z, z)dz-]

On making N—oc, and appealing to Fatbu’s lemma we get (2.4).

Lemma 2. Let B(t), 0<t<1, be a normalized Wiener process as in
(1.2), d=d(ty, t1y ..., t,) & division of the interval (0,%), 0= to<t S r
<tp=t, and put B,=B(t,). Then for At*<1/4

| B(exp[1 3 Biadt, )<e(, )< o0

where c¢(A,t) s independ of A.

The lemma fails to hold for large values of it:. In view of the
result of Cameron and Martin [2] (e.f. also Kac [8], Lévy [10]) we are
naturally led to the above formulation as its discrete counterpart. Here-
after we shall denote by ¢; numerical constants.

Proof. Writing
. Bu(®)=B(t.)  for  £,,<t<t,

we get
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276)1/2

Eexp[lS B2 At ]<§ﬂk{E(StBZ()d> ,
p 2 Dy v—.rﬁhol{';!' ) \T)at ;'

DL (At2)* ( 4! >1/‘~’
< A -1 K
— ; k! (t S EB. WZ’) = Z 0 k2K +1 \ 212 ]

Scli ‘(_42152)]6 =C(1,t) ’
k=0 k

with an absolute constant ¢;. This proves the lemma.

Lemma 3. Let B(t), 0<t<loco, be the normalized Wiener process,
then for any real 2

2.5.1) E exp [ 2 g IB(“))'zdukc ey
S R

Proof. We proceed as in the proof of Lemma 2. First the left-
hand side of (2.5.1) is equal to

w0 S(( P < (e}
Second
en  B(| )

= B(u)™ ) S“" du )Zn—l
<k (SO a +u)2+2(2n—1>sdu ( UW ’

and EB(u)™ =2nlu"/n!2". If we choose £&=1/4, the right-hand member
of (2.7) is dominated by : :

2n! (Sw du )123n+1/2nne—n .
n! 27 \Jo (1 +u)*?

Hence the general term c¢,(2) of the right-hand side of (2.6) satisfies

Inen[z _ 21[¢ (_‘/_g)fn
Cn )\ ~ n ('n,+1)[22n+nlz+114~ An 7 .
@ V2% V2r  V'nln'

Substituting this into (2.6) we obtain (2.5.1), and similarly with (2.5.2).

Proof of Theorem 1. To construet the solutmn, we shall set up, as
in [11] [12], the difference equations

Yi="+ a(to, Yo) AL + A,
Yo=Y+ a/(tl; yl)A’t + Aml :

Yn =yn_1+a(tw_1,yn-1)At+Awn 1y .
where x,=x(t,), Az, ,=w,—x,.,, and A=A(t,t,---,¢,) is an equi-
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distant division of the interval (s,1) ie. s={<&L<- - <{=1,
At=(1—s)/n. We can now write
2.8) Priy,<e}=(agm) | om@mommst-nrat gy,

. Sm e~ W2— a(t,y)At — yl)Z/ZAtdyZ

- co

. Sm e WYn-1—p-2> Yn-2)AL — yoz—?)z/zAtdyn—l

-0

— 0

. Sm o~ Yn—atn-1, Yn-1)AL = Yn-1)*/ 208 dyn

o0

stz

.. Se — (Y1 — Yo |28t — (Y2 — Y1 [ 2AL =+ -+ = (Y0~ Yn 10?201

-—ca

» L(A)@o(9n) Ay dys -+ - AYn s
where
2.9)  LA)=LA, y(-),a)

n-1 ) n—-1
= exp I: an(tw Y,) Ay, — ) Zo a’(ty, yv)At} ,

~and
5096(%):1 ’ u_<_w ’
=0, u>a.

Then according to the form of the weight function in (2.8), u, can be
seen as the coordinates of a Wiener process y(f), 0<t<1, y(s)=yv,,
E(Ay(t))*>=At. From this point of view Pr{y,<wl|y(s)=y,} has been proved
to be given by an average of the Wiener functional L(A,y(:),a)e.(y(1)).
Making A¢—0 this average will be expected to converge to

L(s, %o, y(-))=L(y(+))
— exp| | ate, v — 1| e mde |-
This is true, when at least 1 —s is sufficiently sniall. Indeed by Lemma 2
E{LZ(A7 Zl('), a)}-—<-—{EL(A7 y(')9 4“)}1/2

n-1
- {Eexp [6 X a’(¢,, y,)AL]}?
y=0
<{Eexpo[l+yi+ S BY(L)AL]<e V2 (e;, 1—3) ,
v=1

~ where 1—s is so small that we have e;(1—s)’<1/4. Also by Lemma 3
and Lemma 7 in [12]

Lim. L(A,y(-), &)=L(y(-)) .
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Hence by Lemma 4 in [12] we get

E{L(A, y(+), &)¢.(y(D)} > E{Ly(-)¢.(y(1))}, At—0,

as was to be proved. But according to Theorem 1 [11] [12] v, converges
in the mean to the solution of (1.3) and therefore we obtain

(2.10) Pr{y(1)<a} =E{L(-)¢.1)} -
If we rewrite the right-hand side of (2.10) we have finally
Pr{y(W<a} =| Al 0)Blw )y ,
A(s, Yo; 1, ) =AY, W) =E{L(y(-NDiy(L =y} ,

(2.11)

with
B(s,%; 1, ¥)=B,, y):véﬁ_ o= W= YoR/ A=)
which completes the proof.

Proof of Theorem 2. First observe that under the condition

y(1)=y wy(t) becomes a Markov process which satisfies the stochastic
equations :

()= y+§ Y= y(f)d () —7(s)
t

1— £— _ 1=t [t—s
1—s 1— X(i)—Vl——s§<1——t>’

(2.12)
y(t)=

where £(¢t), 7(t) are normalized Wiener processes, X(¢) is independent of
¥y, ¥ and a conditional Wiener process with X(s)=X(t)=0 (see Lévy
[9], Doob [3]). (2.12) gives also a connection between &(t), 7(t) of the
form

2t)—7(s)=

1/__5 (l—z')df(

If we substitute (2.12) into (2.1.2.) and differentiate the latter with
respect to y,, we get
2.13) \ CLG)|SPEE, @18 ILGOISPP.

=)

[ ste,a—ane)
i)

+1-9)|a—oe (5

dr

Po—c4{(y +y>"°+(1—s)“°5 le(5

(2.15)
+(1—9)*

b

dr

=)=

1
P,=exp C4l:yg+yz+ (1_8)1lz(yg+yz+1)1/zg l§<
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and ;
. 1 1 1
P2=expl:s a(z, y)d7(z) — ~2~S a’(z, y)dr] .
From these estimates we can deduce that
E{|Ly(- )} Lese™W 99
E{| 2 Ly =y e @
Y,

dr)s
+(1—s)“3(E|Sia;,(r, ¥) (1 —2)dn(c)
E(S: E( 1:1')

by Lemma 8. Second by the formula (5.17) of [12]
E | Sla;(r, w)(1 =)y (c) 4=3E’(Sla;2(1—r)2dr>2

68 {({ aa—nar) ([ axa—oyar)}

<ef@-9r+ 1 -9| B, na-oyde}<a-sr.

(2.16)

Indeed first we have

EEy<afiwr+lvt+ 2 (| [e(2)

I

and

dr>3_<_07

Hence
‘ E(Ptsl)—<_cm(1+ ‘?/ol3+lyl3) .
Next from Lemma 3

E(P) <P+ 9) {E exp 6@[(1 +yi+y)" S:%‘iu]}m

. { E exp [604 S“‘Mdu]}ll?g— clleall(yo2+y2) .
o (L+u)?

Also from Lemma 1 and Lemma 3

E(Pg)S{E exp [S:Ga(‘r’ »)d7(c) —18 S:“Z(z_" W) :l}llz
{ E exp (15S:a2(z., y)df)}.”z

© £ yz 9
-<—012{ FE exp ¢, (yg +y S E_(u_)_du>} < 0136013(y02 +y?) .
o (1+u)

Combining these we get (2.16). In quite a similar manner we can
obtain
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(2.17) E {I y(l)=y}£cuecl“@°2+y2) . .

o2
o Ly(-))

By means of (2.13), (2.14), and (2.15) it is now immediate to apply the
Lebesgue criteria of dominated convergence to prove that A(y,, y) is
continuou.sly differentiable twice with respect to y, and we have

O A= B LM =v}=E {2 Lu(-)sm =y} ,

Yo Y,
@18) N -
S A= B L) =y} =B {2 LD =u} .

Thus prepared we are now in a position to show that F'(s,v.;t,y) is
continuously differentiable twice with respect to y,, and

2 _F(s, go; 1,x>=§“ 2 (AB)dy,
oYy oY,

2.19) . .
F(s, 03 1, x)=§ 2 (ABydy .
Yo - 0Yp

In fact in view of (2.16), (2.17) and (2.18) the integrals in the right-
hand members of (2.19) are convergent uniformly in y,, at least when
1—s is sufficiently small, and hence the orders of integration and dif-
ferentiation are exchangeable, thus proving (2.19). The above arguments
also apply, without essential changes, to F'(s, y,; ¢,%) if only ¢—s is suf-
ficiently small, obtaining (2.19) with 1, s replaced by ¢, s.

Now we shall pass on to differentiation with respeet to s. First
we shall set up another expression approximating A(y,,y) which is
slightly different from (2.9) but more convenient to calculate
0A(s, ¥o; 1,9)/os. If we define

L*(A, y(.)):ea(tl’ YoXY1 —Yo) — a2y, Yo)As/2 Lty v, y(+)),
AS=t1 —S, |

we can write
(2.20) AL, y)) =E{L*(A, y( )y =y}

== Smmﬂp(y(u Y1, AS)C(tly yl)dyl ’

where
O (Yoy Y1, AS)=— Wl_W e (%1~ Yo~ s, Yo)As)?/2As ,
27w As :
C((S, yO) ___:!L__y_o ’
1-—s
and

Ctay 1) =™ YW1~ 000~ a2, Y0IAS[2 f(g oy 0y



18 G. MARUYAMA ' NSR. 0.U, vol. 5

By the continuity of A({,,y:,y) already established we can easily show
that

AX(s, y)—> A, %),  tils.
Differentiation of (2.20) gives.

@2 Loaxe, yo)——1~§so0dy1

9A (Y1 —yo)*eCdy,

2(i 8)* S

2 gﬁ”Cd?Jl "‘-(T;——);g(?/l —4)’¢Cdy,

+ -2—a2(t1, yo)SSOCdyl .

Now if we use the estimates for C,(s,y), C,.,(s,y) which will be easily
obtained from (2.16), (2.17), and (2.18) we can write

ALSSSD(%; 41, A8)C(s, y)dy, = A?/lisjme —ur/z C(s, v/ As +aAs+y,)du
=—1—~S°° e~ 12{ C(s, y) + w1/ K +aA9)Cils, )
AS]/2—7; e » Yo S y\®» Yo

+ %(m/z; + aAS)CL(S, Yo+ Out/ As + Oals) }du

=C(Z’Sy°) +aCy(s, o) + - C;;(s, y)+o(l) ,

0<0<1 ,

where o(1) represents a term tending to 0 uniformly in s. In a similar
manner

(As)zg(yl yu)2¢Cdy1—g—+a20+3acy+ 3C;;-i-o(l)

Also we have by definition

Cils, ) —>als, WA, 1)+ Al 1)

0

t: | s.

124
Yy =2

Hence the first two terms in (2.21) contribute

»—EC——(xC l yy+o(1),

and the remaining three terms do
LA, ) + 50 WAE, ) +0(1)

either uniformly in s. So that
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2.22) %Az(s, w)=UGs, w)+o(1), U, w)

— (@ A)(s, o) — (AL (S, y) — (@A, o) —%A;;(s, )

uniformly in s of any finite interval. Therefore the operations
As—O0(¢, | s) and 0/3s are exchangeable, obtaining

2.23) O A(s, y)= lim =2 A% (s, ) = U(s, %) -
as t o8

178
Hence by (2.1), for at least an every small 1—s<3, say, we have

2.24) ga—F(s, Wi 1, ) =r (A:B+AB)dy
s —c0

— —a(s, yo)r 2 (AB)dy—%S aa?;Z(AB)dy
B e 0

== Yy

o '—i Ch }F(Sa Yo 1,&7) ’

=1—a(s,1
‘{ ( Jo)ayo 2 oy

where the change of the orders of differentiation in s and integration
in y is assured by (2.16), (2.17), (2.18), and (2.23). The same arguments
apply also without essential changes to F(s,w,;t,x) if only t—s<J.
Finally we have to prove that (2.3) holds in general for arbitrary s
and ¢.

Choose u such that s<u<t, u—s<d, and write the Chapman-Kolmo-
gorov equation in our notations as

F(s, 4 t, m)—-—S_ A8, Yo %, Y1) B(S, yo; u, Y)F'(u, yy; £, 2)dy, .

Then, since 0<F'(u, y:; t, )1, by the same arguments as in (2.24) we
can write

‘;—(s, i t, ) =§°° (A,B+ AB)F(u, y; t, ©)dy,

o) 1 o% (=

={—a(s,yo) —— H (AB)F(u, y; ¢, x)dy,
Yo 2 Otp)J-=
) 1 82}

=1 —a(s, Y) —— — F(s,y, t, ),

{5 w5 = 5 =G i 1, )
as was to be proved.
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