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On the Propagation of Upper Atmospheric Pressure
Waves in the Westerly Current with Vertical
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Stratification and no Friction)
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Introduction and Summary

With increasing altitudes many peculiar phenomena appear in the
upper atmospheric pressure waves propagating in the westerly current
with vertical gradient, such as displacements of high pressure- (or low
pressure-) centers and the singularity in the vertical distribution of the
upper wind. Among the physical properties of these upper air waves
we are particularly interested in the phase changes associated with
altitude and latitude. In fact the centers of cyclone and anticyclone
developing in middle latitudes displace their positions with the altitude,
that is, their phases change with the altitude. For these phase changes
there are some explanations such as that of Holmbo’s text book.®> But this
explanation contradicts the result of measurements reported by Saito.®
From his statistical treatment of aerological data, he concluded that at
about 4-5km height there was a bend in the axis of the cyclone center,
above which the center of the cyclone is not displaced, but there is a
large change below it. We had also recognized these facts in the
analysis of aerological data during the Pacific war.

As an attempt to interpret these phenomena from the theoretical
point of view we shall propose here that these phenomena are connected
with their phase change at a particular altitude in the westerly current
with vertical gradient, at which altitude the velocity of the mean cur-
rent coincides with that of the perturbation waves. These perturbation
waves may consist of divergence and vorticity waves of the upper air
wind.

In the present paper the author, in the first place, determined
- fundamental equations for these waves, seeking their particular solu-
tions, for which the periods, wave lengths and propagation velocities
are the same as those of the main cyclone- and anticyclone-waves effec-
tive in weather forecasting. From our discussion of this particular

1 Contribution from Department of Physics, Faculty of Science, Ochanomizu
University, No. 19.
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solution we can show that the characteristics of the above mentioned
phase changes are well explained, and furthermore the types of the
change of winds at this altitude are also discussed.

1. Theoretical Formulation of Fundamental Equations for Upper Air
Waves (Divergence and Vorticity Waves of the Upper Air)

In our theoretical treatment of upper air waves we shall discuss,
in the first place, the assumption about forces acting in the upper air,
then show the fundamental equations of the motion, and lastly present
the solutions of these equations by the method of approximation.

(A) Assumed forces:
We shall consider the following forces acting in the upper air.

(i) Pressure gradient force and barocline force:—We consider the
usual pressure gradient forces as well as the forces arising from
the effect of the earth’s rotation on the barocline fields of density
distribution. : :

(ii) Vertical components of acceleration, Coriolis and gradient
forces :—We treat the case in which, as for the vertical component,
the gravitational force is always in equilibrium with the vertical
pressure gradients, while the vertical components of acceleration
and Coriolis force are neglected. ,

(iii) Horizontal components of Coriolis force and their variation with
altitude :—As for the horizontal motion, we take up not only
Coriolis force but also its variation with latitude, as the stream-
lines of air fluids to be discussed in this paper vary considerably
in the direction of latitude, in accordance with Rossby’s point of
view for westerly perturbation waves. But the effects of spherical
structure of the earth are not considered.

(iv) Frictional force:—For the lower atmosphere near the ground
and the upper atmosphere, where the mean current coincides with
the: velocity of perturbation waves, we consider the effects of the
eddy viscosity, by which the interesting phase changes of the
centers of cyclone and anticyclone arc considerably modified.

(v ) Polytropic change :—For the thermodynamic change of air we
assume a polytropic change between the change of pressure and
density including the effects of radiation.

(B) Fundamental Equations:

Fundamental equations of the upper air for our problem are the
equations of motion, the eguation of continuity and the equation of
thermodynamic change. Considering the assumption mentioned above
for forces acting, those equations are as follows:

(i) Equations of motion:
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where 1 is a horizontal component of the Coriolis force, u and v
are horizontal and vertical components of wind velocity, g the
gravitational constant, » the coefficient of eddy viscosity, and »
and p are the pressure and density of the air, respectively.

(ii) Equation of continuity:

dp. _

ge TPV V=0. (2)
(iii) Equation for polytropie change:

dp __dp _

where 7 is the piezotropic coefficient.

(C) Method of approximation:

To make analytically possible our theoretical treatment of upper
air waves, we shall take the following step as the method of approxi-
mation for the atmospherie state.

(i) In the Oth approximation the atmosphere stratified horizontally
and vertically flows stationarily in the west-east direction forming
a longitudinal flow. Its velocity increases with altitude up to the
troposphere as U=U,z+U,. Its order of magnitude is 1(°, as that
of the barotropic coefficient is I” =g;—°~10””’.

Q

(ii) In the first approximation the following perturbation waves are

superposed on the air currents. Their average values are

period 3 days, (T=2.4x10%,
wave length 3000 km, ( _ 27”—2 % 10" )

propagation velocity 20 km/sec, (c=2 x 10%).

2. Treatment of Fundamental Equations

In this section we shall treat the above mentioned fundamental
equations by the method of approximation step by step. Physical
quantities—presssure, density and upper wind velocity—are divided into
two parts—the Oth and first approximation terms. .
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In the Oth approximation after substituting the Oth term of Eq. (4)
into Eq. (1), we obtain the following equations of motion

1 2p

2 @)=~ oo, .
3]
0— _i %9_
Py o2

The equation of continuity is trivial. The equation of a stratified
layer is

dpo

——=]". 6

dp, (6)

From Egs. (56) and (6) components of the density gradient are

80y __ dpy Ops
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The effects of stratified layer appear in two parts—horizontal and ver-
tical stratifications. In this paper we shall assume that vertical strati-
fieation prevails and take it into considerations.

In the first approximation substituting Egq. (4) into Eq. (1) and
eliminating the Oth order quantities and second order terms, as the
latter are infinitesimal quantities, we obtain the following egquations

ou ou 1 2p o*u
ot TU@ G, —2ho=— o TV
oV 1 2p  p azv
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at+U() Y 2 o ay+‘%+ e )
__1op p
Po OY Po
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at+U() + Py ( +U() +ay Py
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The effects of friction are considered only in the direction of z-axis and
all the suffixes are omitted.
Now making the rotation and divergence for Egs. (6), we have

3 | 0 o1 ¥, AU op
o F UL T2+ 2 op _
5t +22% + o T o 0
9 3 1 o 20U 2 (10)
D —_ J— L O R
UL 20+ 2 yu-!—pAp Vot
W 0 6
here ¢ az—'a}i and *%2 52

Following Rossby we take into consideration the latitude change of
Coriolis force as follows
04 osin ¢

2" =2w 52, 11
oy o(ap) =Y (11)

where

2wq cos?
Vo==—"" ?  and k=Fka cos ¢ .

Then we assume that these perturbation waves are simple mono-
chromatic waves propagating for positive z-axis (eastwards), and for
positive y-axis (northwards) with exponentially increasing amplitudes
such as

u=— {ikA(2) +B(2)}ely+iki@~ct)
v={—1A(R)+1kB(2)}ely+iklx—ct)

w=C(2)ely +iklx~ct) A g

= po(y, 2)D(z)ely +iklz—ct) :

p=py(y, 2)E(2)ely +iklz—ct) |

and investigate the distribution in the vertical direction. Then the
rotation and divergence waves of the wind velocity are

¢ = — (k2 —1?) B(2)ely+ikw—ct)

1
1=k — 1) A(R)ely +ikio—ct) , 13)

Introducing Egs. (7) and (8) into Egs. (5) and (6), we have the follow-
ing five equations for determining five quantities 4, B, C, D and E as
functions of the altitude variable z.

itk {—(U—-c)(k*—=1®) + k*v,} B+ v(k*—1)B"”
— kvl —22(k*— 1))} A+ 2ikAUE =0 ,
e {(U—c)(k*— 1) — kv, }A— {kFvl—2)(k*—1")}B
—v(k*— 1A — (R -1)D+ 200, UE =0,
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D' —gI'D+gE=0, (14)
(U —~0)E—2UI(—1A+ikB)—gI'C+ C' + (B —1) A—0,
i(U—6)E—2UT(—1A+ikB)—gI'C

=7 (ih(U—e)D—2UT(—1A+ikB)—gI'C} .

where the prime denotes the differentiation.

3. The Case of no Horizontal Stratification

We shall consider the case of no horizontal stratification to investi-
gate some features of our formulation. Neglecting the effects of
stratification, that is, the term AUI", we have from Eq. (4)

kel
-1

—ik(U—c )B+(zz —v, )A+ VB =0,

Y k*
¢
zk(U c— vcqu ZZ)A+(22 vc )B—VA” D=0,
D'—gI'D+gE=0, (15)
tk(U—c)E—gl'C+C' +(B*—1)A=0,
tk(U—c)E—gI"'C=7{tk(U—-c)D—gC} .

From Eq. (15) we shall seek an equation containing A(z) only. From
the first and second of Eq. (15) we have a relation between 4 and B.

AN — 2¢k(U— c— >uA” KU A

v i
¢ kz __ Zz

?; k2 2 k‘zl 2
_{k<U—-c——vck2_l9) (2& O lz)}A (16)
il
Ty P
— =D+l U= 0,77 )D -

On the other hand from the third, fourth and fifth of Eq. (15) we have
another relation between A and D.
ik
o—1r) =k

—e)D" + (U —gI'U—e)D’ +U'g(y—)D}. (17)

A differential equation may be obtained for a single variable D or A,
but it needs not to write down here as it is too complicated.

-4, 'The Case of no Horizontal Stratification and no Friction

For this case the equation to be satisfied by D is

fir{v-e—nZp) -(@-0p )
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Assuming a simple relation for the mean westerly current as U=U,’?
+U,, we obtain a differential equation for D
(z—a+b)(z—a—b){(z—c)D"+(dz+d,)D'+ (ez+e,)D} + (fiz+f.) D=0, (19)

where

-1 k? 1 Kl
a= Uo/ (Uo—c—vck—z:l—z—> . b= kU0' (22—’03“‘?2_?) )

d,=—-U,gl", d,=U"—gI'(Uy—c) , 20)
e,=UorI", e.=Ulg(r—1I")+(U,—oc)gr 1",
k=P 1) Je— 1

fim =" g == 0= D)(Ume—vis ) -

In this differential equation for D there are three regular singular
points (z=a-+b, a—b, ¢), and

one irregular singular point
(2=o0). We shall call these atbh | CH+Vetla /
singular points as the singular C+Ve
heights of D, its outline is i—b C+VUe Vs
shown in the Fig. 1. As easily
seen, the height of z=a, which
is singular when the effect of
Coriolis force is neglected, is
split out into two singular g
heights (zzq—i—b, a—>b). ' x
ok /
Ve =7, 22
2 kl Fig. 1. Singular Heights (Velocities of each
Vo= 2 — Y 2] perturbation wave are indicated by their

arrows)..

(A) Approximate Solution of D in the Neighborhood of Singular
Heights
In the neighborhood of the points (z=a+b, a—b) the equation to be
satisfied by D is '

(D" +dD'+eD)+ fD=0, (21)
where
d=d,(a+b)+d,Ja+b—c e=e,(a+b)+efa+b—c
Sfil@£b)+ 1,

S obaLb—o)
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We shall solve Eq. (21) by the method of Frobenius. Putting

D@)=Sazo+i ’ (22)
i=0
its indicial equation becomes

plo—1)=0. (23)

As the difference of the roots of Eg. (23) is an integer, we have a
solution containing a logarithmic term such as
for z>0

Di(2) =2+ 02" + Qs2° -+ oeeeee ,

24
Dy(z)=1+bz2+by2>+ eeee- —fFDiy(2)logz, (24)

for 2<C0 we have the same D, as z>0, but for D, we obtain as follows
Dy(z)=1+bz+ b2+ eoeee — FDi(&)(logz+17) , (25)
where the double sign is meant as

J + for a weak cyclone,
|— for a developing eyclone.

(B) Phase Change of Pressure Waves with Altitude (Case of a deve-
loping cyclone)

For the general pressure waves the vertieal distribution of the
density D is determined as the linear ecombination of D, and D,, their
ratio being fixed by the boundary conditions. In this section we shall
consider a simple case, in which there exists only D,, and make clear its
feature for the phase change. The details for the boundary problem
will be discussed in our later paper. The characteristics of phase
change in the neighborhood of the singular height (z=0) will be fully
discussed by our present treatment for D, only.

We have as the approximate solution for D,(z) and D.(2)

z>0
{D1(2)=Z ’
D,(z)=1—fzlogz,
2<0 (26)
{Dl(z)=z ’
D,(2)=1—fz(log z—1in) .

To make clear the phase change in 2<{0, we put as D,=A.%, then

fz
1—nfz

p=tan-! =tan-'zfz. (27)
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For this case the pressure wave propagating towards the positive -
axis takes the following form:

for z2>0 p:paDz(z)ely+i7c(x—ct) ,

for z<0 p—_—pvo(z)gly—}-i{k(x—-ct)-!—qo} ,

The phase of pressure wave retarded by =fz in 2<0, as seen in Eq.
(28). The position of the equal phase proceeds in the direction of posi-
tive «, according as z becomes large, as z is negative. This method of
approximation can be applied up to the order of magnitude fz~'/,, as
the order of magnitude of ¢ is 10-9,
the phase change arises linearly up to
the height 2z=5x10° (=5km). The
characteristics of these pressure waves
can be said as follows.

Though there happens no change of
phase in the pressure waves above the :
singular height (z>>0), the position with ‘ l 53
an equal phase displaces forwards for -1§ . )
the developing cyclone and backwards in -1k %
the weak cyclone below the singular
height (2<0). e I

When the order of magnitude of fz '
becomes 1, the orders of D, and D,
become the same as 1 and the phase Fig. 2. Phase change for the
change becomes stationary for the larger developing cyclone.
values than ¢—tan~'7z—=72°. This fact is shown in Fig. 2 for the
developing cyclone.

z
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